Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography

Abstract

Graphene has exceptional electronic, optical, mechanical and thermal properties, which provide it with great potential for use in electronic, optoelectronic and sensing applications. The chemical functionalization of graphene has been investigated with a view to controlling its electronic properties and interactions with other materials. Covalent modification of graphene by organic diazonium salts has been used to achieve these goals, but because graphene comprises only a single atomic layer, it is strongly influenced by the underlying substrate. Here, we show a stark difference in the rate of electron-transfer reactions with organic diazonium salts for monolayer graphene supported on a variety of substrates. Reactions proceed rapidly for graphene supported on SiO2 and Al2O3 (sapphire), but negligibly on alkyl-terminated and hexagonal boron nitride (hBN) surfaces, as shown by Raman spectroscopy. We also develop a model of reactivity based on substrate-induced electron–hole puddles in graphene, and achieve spatial patterning of chemical reactions in graphene by patterning the substrate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical reactivity of graphene supported on different substrates.
Figure 2: Raman spectroscopy peak parameter analysis.
Figure 3: Spatial control of reactivity of graphene on patterned substrates.
Figure 4: Patterning of proteins on graphene.
Figure 5: Modelling of substrate-influenced reactivity.

References

  1. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  3. Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S. & Govindaraj, A. Graphene: the new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48, 7752–7777 (2009).

    Article  CAS  Google Scholar 

  4. Bekyarova, E. et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336–1337 (2009).

    Article  CAS  Google Scholar 

  5. Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  Google Scholar 

  6. Wang, Q. H. & Hersam, M. C. Nanofabrication of heteromolecular organic nanostructures on epitaxial graphene via room temperature feedback-controlled lithography. Nano Lett. 11, 589–593 (2010).

    Article  Google Scholar 

  7. Chen, W., Chen, S., Qi, D. C., Gao, X. Y. & Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 129, 10418–10422 (2007).

    Article  CAS  Google Scholar 

  8. Wang, Q. H. & Hersam, M. C. Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nature Chem. 1, 206–211 (2009).

    Article  CAS  Google Scholar 

  9. Jin, Z. et al. Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chem. Mater. 23, 3362–3370 (2011).

    Article  CAS  Google Scholar 

  10. Niyogi, S. et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 10, 4061–4066 (2010).

    Article  CAS  Google Scholar 

  11. Sharma, R., Baik, J. H., Perera, C. J. & Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 10, 398–405 (2010).

    Article  CAS  Google Scholar 

  12. Hossain, M. Z., Walsh, M. A. & Hersam, M. C. Scanning tunneling microscopy, spectroscopy, and nanolithography of epitaxial graphene chemically modified with aryl moieties. J. Am. Chem. Soc. 132, 15399–15403 (2010).

    Article  CAS  Google Scholar 

  13. Farmer, D. B. et al. Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009).

    Article  CAS  Google Scholar 

  14. Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W. F. & Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008).

    Article  CAS  Google Scholar 

  15. Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010).

    Article  CAS  Google Scholar 

  16. Englert, J. M. et al. Covalent bulk functionalization of graphene. Nature Chem. 3, 279–286 (2011).

    Article  CAS  Google Scholar 

  17. Farmer, D. B., Lin, Y. M., Afzali-Ardakani, A. & Avouris, P. Behavior of a chemically doped graphene junction. Appl. Phys. Lett. 94, 213106 (2009).

    Article  Google Scholar 

  18. Fan, X. Y., Nouchi, R., Yin, L. C. & Tanigaki, K. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 21, 475208 (2010).

    Article  Google Scholar 

  19. Zhang, H. et al. Aryl functionalization as a route to band gap engineering in single layer graphene devices. Nano Lett. 11, 4047–4051 (2011).

    Article  CAS  Google Scholar 

  20. Chen, J. H. et al. Charged-impurity scattering in graphene. Nature Phys. 4, 377–381 (2008).

    Article  CAS  Google Scholar 

  21. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nature Phys. 5, 722–726 (2009).

    Article  CAS  Google Scholar 

  22. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  23. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  24. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  25. Xue, J. M. X. J. M. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  26. Lafkioti, M. et al. Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions. Nano Lett. 10, 1149–1153 (2010).

    Article  CAS  Google Scholar 

  27. Liu, Z. H., Bol, A. A. & Haensch, W. Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane self-assembled monolayers. Nano Lett. 11, 523–528 (2011).

    Article  CAS  Google Scholar 

  28. Yokota, K., Takai, K. & Enoki, T. Carrier control of graphene driven by the proximity effect of functionalized self-assembled monolayers. Nano Lett. 11, 3669–3675 (2011).

    Article  CAS  Google Scholar 

  29. Yan, Z. et al. Controlled modulation of electronic properties of graphene by self-assembled monolayers on SiO2 substrates. ACS Nano 5, 1535–1540 (2011).

    Article  CAS  Google Scholar 

  30. Fan, X., Nouchi, R. & Tanigaki, K. Effect of charge puddles and ripples on the chemical reactivity of single layer graphene supported by SiO2/Si substrate. J. Phys. Chem. C 115, 12960–12964 (2011).

    Article  CAS  Google Scholar 

  31. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  32. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008).

    Article  Google Scholar 

  33. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  CAS  Google Scholar 

  34. Kim, K. et al. Grain boundary mapping in polycrystalline graphene. ACS Nano 5, 2142–2146 (2011).

    Article  CAS  Google Scholar 

  35. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  36. Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007).

    Article  CAS  Google Scholar 

  37. Basko, D. M., Piscanec, S. & Ferrari, A. C. Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

    Article  Google Scholar 

  38. Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article  Google Scholar 

  39. Ferrari, A. C. & Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 014095 (2000).

    Article  CAS  Google Scholar 

  40. Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592–1597 (2010).

    Article  CAS  Google Scholar 

  41. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008).

    Article  CAS  Google Scholar 

  42. Lazzeri, M. & Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006).

    Article  Google Scholar 

  43. Casiraghi, C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi RRL 3, 175–177 (2009).

    Article  CAS  Google Scholar 

  44. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Article  Google Scholar 

  45. Yoon, D. et al. Interference effect on Raman spectrum of graphene on SiO2/Si. Phys. Rev. B 80, 125422 (2009).

    Article  Google Scholar 

  46. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nature Protoc. 5, 491–502 (2010).

    Article  CAS  Google Scholar 

  47. Xia, Y., Mrksich, M., Kim, E. & Whitesides, G. M. Microcontact printing of octadecylsiloxane on the surface of silicon dioxide and its application in microfabrication. J. Am. Chem. Soc. 117, 9576–9577 (1995).

    Article  CAS  Google Scholar 

  48. Kodali, V. K. et al. Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 27, 863–865 (2010).

    Article  Google Scholar 

  49. Nair, N., Kim, W.-J., Usrey, M. L. & Strano, M. S. A structure–reactivity relationship for single walled carbon nanotubes reacting with 4-hydroxybenzene diazonium salt. J. Am. Chem. Soc. 129, 3946–3954 (2007).

    Article  CAS  Google Scholar 

  50. Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C. & Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 40, 4143–4166 (2011).

    Article  CAS  Google Scholar 

  51. Galli, C. Radical reactions of arenediazonium ions: an easy entry into the chemistry of the aryl radical. Chem. Rev. 88, 765–792 (1988).

    Article  CAS  Google Scholar 

  52. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

  53. Sharma, R., Nair, N. & Strano, M. S. Structure–reactivity relationships for graphene nanoribbons. J. Phys. Chem. C 113, 14771–14777 (2009).

    Article  CAS  Google Scholar 

  54. Casiraghi, C. Doping dependence of the Raman peaks intensity of graphene close to the Dirac point. Phys. Rev. B 80, 233407 (2009).

    Article  Google Scholar 

  55. Taniguchi, T. & Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 303, 525–529 (2007).

    Article  CAS  Google Scholar 

  56. Thomsen, C. & Reich, S. Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214–5217 (2000).

    Article  CAS  Google Scholar 

  57. Royant, A. & Noirclerc-Savoye, M. Stabilizing role of glutamic acid 222 in the structure of enhanced green fluorescent protein. J. Struct. Biol. 174, 385–390 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily funded by a 2009 US Office of Naval Research Multi University Research Initiative (MURI) grant on Graphene Advanced Terahertz Engineering (GATE) at MIT, Harvard and Boston University. J.D.S.-Y. and P.J.-H. acknowledge support from an NSF CAREER award (DMR-0845287). K.K.K. acknowledges an NSF award (DMR-0845358) and support from the Materials, Structures and Device (MSD) Center of the Focus Center Research Program (FCRP) at the Semiconductor Research Corporation. The authors thank M.K. Mondol of the MIT Scanning Electron Beam Lithography facility for assistance.

Author information

Authors and Affiliations

Authors

Contributions

Q.H.W. designed and conducted the substrate and patterning experiments, performed Raman spectroscopy, AFM and data analysis. Z.J. performed protein attachment, ATR–IR and fluorescence imaging. A.J.H., Q.H.W. and M.S.S. devised the model. K.K.K. synthesized the CVD graphene. K.W. and T.T. synthesized the hBN crystal. J.D.S.-Y. exfoliated the hBN crystal. G.L.C.P., C.-J.S. and M.-H.H. conducted additional experiments. Q.H.W. and M.S.S. wrote the manuscript. All authors contributed to the discussion and interpretation of results.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1712 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Jin, Z., Kim, K. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nature Chem 4, 724–732 (2012). https://doi.org/10.1038/nchem.1421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing