Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantitative model for the transcription of 2D patterns into functional 3D architectures

Abstract

Self-sorting on surfaces is one of the big challenges that must be addressed in preparing the organic materials of the future. Here, we introduce a theoretical framework for templated self-sorting on surfaces, and validate it experimentally. In our approach, the transcription of two-dimensional information encoded in a monolayer on the surface into three-dimensional supramolecular architectures is quantified by the intrinsic templation efficiency, a thickness-independent value describing the fidelity of transcription per layer. The theoretical prediction that exceedingly high intrinsic efficiencies will be needed to experimentally observe templated self-sorting is then confirmed experimentally. Intrinsic templation efficiencies of up to 97%, achieved with a newly introduced templated synthesis strategy, result in maximal 47% effective templation efficiency at a thickness of 70 layers. The functional relevance of surface-templated self-sorting and meaningful dependences of templation efficiencies on structural modifications are demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of template-directed co-SOSIP.
Figure 2: Transcription of 2D information into 3D architectures from theory and experiment.
Figure 3: Functional consequences of surface-templated self-sorting during co-SOSIP.

Similar content being viewed by others

References

  1. Diederich, F. & Stang, P. J. (eds) Templated Organic Synthesis (VCH-Wiley, 1999).

    Book  Google Scholar 

  2. Li, X. & Liu, D. R. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  3. Jacobsen, M. F., Ravnsbæk, J. B. & Gothelf, K. V. Small molecule induced control in duplex and triplex DNA-directed chemical reactions. Org. Biomol. Chem. 8, 50–52 (2010).

    Article  CAS  Google Scholar 

  4. Röthlingshöfer, M., Gorska, K. & Winssinger, N. Nucleic acid-templated energy transfer leading to a photorelease reaction and its application to a system displaying a nonlinear response. J. Am. Chem. Soc. 133, 18110–18113 (2011).

    Article  Google Scholar 

  5. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  6. O'Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

    Article  CAS  Google Scholar 

  7. Chichak, K. S. et al. Molecular Borromean rings. Science 304, 1308–1312 (2004).

    Article  CAS  Google Scholar 

  8. Cougnon, F. B. L., Au-Yeung, H. Y., Pantos, G. D. & Sanders, J. K. M. Exploring the formation pathways of donor–acceptor catenanes in aqueous dynamic combinatorial libraries. J. Am. Chem. Soc. 133, 3198–3207 (2011).

    Article  CAS  Google Scholar 

  9. von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that walks down a track. Nature Chem. 2, 96–101 (2010).

    Article  CAS  Google Scholar 

  10. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  Google Scholar 

  11. Prins, L. J. & Scrimin, P. Covalent capture: merging covalent and noncovalent synthesis. Angew. Chem. Int. Ed. 48, 2288–2306 (2009).

    Article  CAS  Google Scholar 

  12. Yoder, N. C. & Kumar, K. Selective protein–protein interactions driven by a phenylalanine interface. J. Am. Chem. Soc. 128, 188–191 (2006).

    Article  CAS  Google Scholar 

  13. Zhang, J., Jing, B., Janout, V. & Regen, S. L. Detecting cross talk between two halves of a phospholipid bilayer. Langmuir 23, 8709–8712 (2007).

    Article  CAS  Google Scholar 

  14. Sakai, N. et al. Self-organizing surface-initiated polymerization: facile access to complex functional systems. J. Am. Chem. Soc. 133, 15224–15227 (2011).

    Article  CAS  Google Scholar 

  15. Lista, M., Areephong, J., Sakai, N. & Matile, S. Lateral self-sorting on surfaces: a practical approach to double-channel photosystems. J. Am. Chem. Soc. 133, 15228–15230 (2011).

    Article  CAS  Google Scholar 

  16. Sakai, N. & Matile, S. Stack exchange strategies for the synthesis of covalent double-channel photosystems by self-organizing surface-initiated polymerization. J. Am. Chem. Soc. 133, 18542–18545 (2011).

    Article  CAS  Google Scholar 

  17. Sakai, N., Mareda, J., Vauthey, E. & Matile, S. Core-substituted naphthalenediimides. Chem. Commun. 46, 4225–4237 (2010).

    Article  CAS  Google Scholar 

  18. Misek, J. et al. A chiral and colorful redox switch: enhanced π acidity in action. Angew. Chem. Int. Ed. 49, 7680–7683 (2010).

    Article  CAS  Google Scholar 

  19. Chong, Y. S., Dial, B. E., Burns, W. G. & Shimizu, K. D. Covalent locking and unlocking of an atropisomeric molecular switch. Chem. Commun. 48, 1296–1298 (2012).

    Article  CAS  Google Scholar 

  20. Alvey, P. M., Reczek, J. J., Lynch, V. & Iverson, B. L. A systematic study of thermochromic aromatic donor–acceptor materials. J. Org. Chem. 75, 7682–7690 (2010).

    Article  CAS  Google Scholar 

  21. Safont-Sempere, M. M., Fernández G. & Würthner F. Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814 (2011).

    Article  CAS  Google Scholar 

  22. Wu, A. X. & Isaacs, L. Self-sorting: the exception or the rule? J. Am. Chem. Soc. 125, 4831–4835 (2003).

    Article  CAS  Google Scholar 

  23. Jiang, W. & Schalley, C. A. Integrative self-sorting is a programming language for high level self-assembly. Proc. Natl Acad. Sci. USA 106, 10425–10429 (2009).

    Article  CAS  Google Scholar 

  24. Taylor, P. N. & Anderson, H. L. Cooperative self-assembly of double-strand conjugated porphyrin ladders. J. Am. Chem. Soc. 121, 11538–11545 (1999).

    Article  CAS  Google Scholar 

  25. Ajami, D., Hou, J. L., Dale, T. J., Barrett, E. & Rebek, J. Disproportionation and self-sorting in molecular encapsulation. Proc. Natl Acad. Sci. USA 106, 10430–10434 (2009).

    Article  CAS  Google Scholar 

  26. Botterhuis, N. E., Karthikeyan, S., Spiering, A. J. H. & Sijbesma, R. P. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers. Macromolecules 43, 745–751 (2010).

    Article  CAS  Google Scholar 

  27. Shaller, A. D., Wang, W., Gan, H. & Li, A. D. Q. Tunable molecular assembly codes direct reaction pathways. Angew. Chem. Int. Ed. 47, 7705–7709 (2009).

    Article  Google Scholar 

  28. Bain, C. D. & Whitesides, G. M. Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain. J. Am. Chem. Soc. 111, 7164–7175 (1989).

    Article  CAS  Google Scholar 

  29. Charbonnaz, P., Sakai, N. & Matile, S. Self-organizing surface-initiated polymerization of perylenediimides on indium tin oxides. Chem. Sci. 3, 1492–1496 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Jeannerat, A. Pinto and S. Grass for NMR measurements, the Sciences Mass Spectrometry (SMS) platform for mass spectrometry services, and the University of Geneva, the European Research Council (ERC Advanced Investigator), the National Centre of Competence in Research (NCCR) Chemical Biology and the Swiss NSF for financial support. E.O. acknowledges a Sciex Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

E.O., M.L. and N.T.L. synthesized compounds. E.O. and M.L. carried out the templation studies on the surfaces. N.S. and S.M. directed the study, and contributed to the design, execution and interpretation of the experiments and writing of the manuscript.

Corresponding author

Correspondence to Stefan Matile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orentas, E., Lista, M., Lin, NT. et al. A quantitative model for the transcription of 2D patterns into functional 3D architectures. Nature Chem 4, 746–750 (2012). https://doi.org/10.1038/nchem.1429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1429

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing