Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects

Abstract

Although arguably the most important reaction in glycoscience, chemical glycosylations are among the least well understood of organic chemical reactions, resulting in an unnecessarily high degree of empiricism and a brake on rational development in this critical area. To address this problem, primary 13C kinetic isotope effects have now been determined for the formation of β- and α-manno- and glucopyranosides using a natural abundance NMR method. In contrast to the common current assumption, for three of the four cases studied the experimental and computed values are indicative of associative displacement of the intermediate covalent glycosyl trifluoromethanesulfonates. For the formation of the α-mannopyranosides, the experimentally determined KIE differs significantly from that computed for an associative displacement, which is strongly suggestive of a dissociative mechanism that approaches the intermediacy of a glycosyl oxocarbenium ion. The application of analogous experiments to other glycosylation systems should shed further light on their mechanisms and thus assist in the design of better reactions conditions with improved stereoselectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated (B3LYP) associative transition states for the reaction of isopropanol with 4,6-O-benzylidene protected manno- and glucopyransyl triflates, leading to the formation of the α- and β-glycosides in each case.
Figure 2: Mechanistic picture for the 4,6-O-benzylidene-directed formation of α- and β-gluco- and mannopyranosides.

Similar content being viewed by others

References

  1. Gabius, H.-J. (ed.) The Sugar Code (Wiley-VCH, 2009).

  2. Martin McGowan, E. D. & Bowman, K. Background Paper on Glycosciences and Glycomics in the United States (National Research Council, 2010).

    Google Scholar 

  3. Wu, C.-Y. & Wong, C.-H. Chemistry and glycobiology. Chem. Commun. 47, 6201–6207 (2011).

    Article  CAS  Google Scholar 

  4. Seeberger, P. H. Chemical glycobiology: why now? Nature Chem. Biol. 5, 368–372 (2009).

    Article  CAS  Google Scholar 

  5. Boltje, T. J., Buskas, T. & Boons, G.-J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nature Chem. 1, 611–622 (2009).

    Article  CAS  Google Scholar 

  6. Galan, M. C., Benito-Alifonsoa, D. & Watt, G. M. Carbohydrate chemistry in drug discovery. Org. Biomol. Chem. 9, 3598–3610.

  7. Chlubnova, I. et al. Natural glycans and glycoconjugates as immunomodulating agents. Nat. Prod. Rep. 28, 937–952 (2011).

    Article  CAS  Google Scholar 

  8. Stallforth, P., Lepenies, B., Adibekian, A. & Seeberger, P. H. Carbohydrates: a frontier in medicinal chemistry. J. Med. Chem. 52, 5561–5576 (2009).

    Article  CAS  Google Scholar 

  9. Zhu, X. & Schmidt, R. R. New principles for glycoside-bond formation. Angew. Chem. Int. Ed. 48, 1900–1934 (2009).

    Article  CAS  Google Scholar 

  10. Demchenko, A. V. (ed.) Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance (Wiley-VCH, 2008).

  11. Horenstein, N. A. Mechanism for nucleophilic aliphatic substitution at glycosides. Adv. Phys. Org. Chem. 41, 275–314 (2006).

    CAS  Google Scholar 

  12. Sinnott, M. L. Carbohydrate Chemistry and Biochemistry (RSC Publishing, 2007).

    Google Scholar 

  13. Barresi, F. & Hindsgaul, O. Chemically synthesized oligosaccharides, 1994. A searchable table of glycosidic linkages. J. Carbohydr. Chem. 14, 1043–1087 (1995).

    Article  CAS  Google Scholar 

  14. Bohé, L. & Crich, D. A propos of glycosyl cations and the mechanism of chemical glycosylation. C. R. Chimie 14, 3–16 (2011).

    Article  Google Scholar 

  15. Smith, D. M. & Woerpel, K. A. Electrostatic interactions in cations and their importance in biology and chemistry. Org. Biomol. Chem. 4, 1195–1201 (2006).

    Article  CAS  Google Scholar 

  16. Whitfield, D. M. Computational studies of the role of glycopyranosyl oxacarbenium ions in glycobiology and glycochemistry. Adv. Carbohydr. Chem. Biochem. 62, 83–159 (2009).

    Article  CAS  Google Scholar 

  17. Satoh, H., Hansen, H. S., Manabe, S., van Gunsteren, W. F. & Hunenberger, P. H. Theoretical investigation of solvent effects on glycosylation reactions: stereoselectivity controlled by preferential conformations of the intermediate oxacarbenium–counterion complex. J. Chem. Theor. Comput. 6, 1783–1797 (2010).

    Article  CAS  Google Scholar 

  18. Li, Z. Computational study of the influence of cyclic protecting groups in stereoselectivity of glycosylation reactions. Carbohydr. Res. 345, 1952–1957 (2010).

    Article  CAS  Google Scholar 

  19. Saito, K. et al. Indirect cation-flow method: flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations. Angew. Chem. Int. Ed. 50, 5153–5156 (2011).

    Article  CAS  Google Scholar 

  20. Crich, D. & Sun, S. Direct synthesis of β-mannopyranosides by the sulfoxide method. J. Org. Chem. 62, 1198–1199 (1997).

    Article  CAS  Google Scholar 

  21. Crich, D. Mechanism of a chemical glycosylation. Acc. Chem. Res. 43, 1144–1153 (2010).

    Article  CAS  Google Scholar 

  22. Aubry, S., Sasaki, K., Sharma, I. & Crich, D. Influence of protecting groups on the reactivity and selectivity of glycosylation: chemistry of the 4,6-O-benzylidene protected mannopyranosyl donors and related species. Top. Curr. Chem. 301, 141–188 (2011).

    Article  CAS  Google Scholar 

  23. Crich, D. & Sun, S. Are glycosyl triflates intermediates in the sulfoxide glycosylation method? A chemical and 1H, 13C, and 19F-NMR spectroscopic investigation. J. Am. Chem. Soc. 119, 11217–11223 (1997).

    Article  CAS  Google Scholar 

  24. Crich, D. Chemistry of glycosyl triflates: synthesis of β-mannopyranosides. J. Carbohydr. Chem. 21, 663–686 (2002).

    Article  Google Scholar 

  25. Berti, P. J. & Tanaka, K. S. E. Transition state analysis using multiple kinetic isotope effects: mechanisms of enzymatic and non-enzymatic glycoside hydrolysis and transfer. Adv. Phys. Org. Chem. 37, 239–313 (2002).

    CAS  Google Scholar 

  26. Chan, J., Lewis, A. R., Gilbert, M., Karwaski, M.-F. & Bennet, A. J. A direct NMR method for the measurement of competitive kinetic isotope effects. Nature Chem. Biol. 6, 405–407 (2010).

    Article  CAS  Google Scholar 

  27. Melander, L. & Saunders, W. H. Reaction Rates of Isotopic Molecules (Wiley-Interscience, 1980).

    Google Scholar 

  28. Singleton, D. A. & Szymanski, M. J. Simultaneous determination of intermolecular and intramolecular 13C and 2H kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 121, 9455–9456 (1999).

    Article  CAS  Google Scholar 

  29. Lee, J. K., Bain, A. D. & Berti, P. J. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy. J. Am. Chem. Soc. 126, 3769–3776 (2004).

    Article  CAS  Google Scholar 

  30. Crich, D. & Chandrasekera, N. S. Mechanism of 4,6-O-benzylidene directed β-mannosylation as determined by α-deuterium kinetic isotope effects. Angew. Chem. Int. Ed. 43, 5386–5389 (2004).

    Article  CAS  Google Scholar 

  31. Crich, D., Smith, M., Yao, Q. & Picione, J. 2,4,6-Tri-tert-butylpyrimidine (TTBP): a cost effective, readily available alternative to the hindered base 2,6-di-tert-butylpyridine and its 4-substituted derivatives in glycosylation and other reactions. Synthesis 323–326 (2001).

  32. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  33. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  34. Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  35. Bigeleisen, J., Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).

    Article  CAS  Google Scholar 

  36. Seeman, J. I. Effect of conformational change on reactivity in organic chemistry. Chem. Rev. 83, 83–134 (1983).

    Article  CAS  Google Scholar 

  37. Lemieux, R. U. in Molecular Rearrangements (ed. De Mayo, P.) Part 2, 709–769 (Interscience Publishers, 1964).

    Google Scholar 

  38. Walvoort, M. T. C. et al. Equatorial anomeric triflates from mannuronic acid esters. J. Am. Chem. Soc. 131, 12080–12081 (2009).

    Article  CAS  Google Scholar 

  39. Crich, D. & Sharma, I. Is donor–acceptor hydrogen bonding necessary for 4,6-O-benzylidene-directed β-mannopyranosylation? Stereoselective synthesis of β-C-mannopyranosides and α-C-glucopyranosides. Org. Lett. 10, 4731–4734 (2008).

    Article  CAS  Google Scholar 

  40. Crich, D. & Sharma, I. Influence of the O3 protecting group on stereoselectivity in the preparation of C-mannopyranosides with 4,6-O-benzylidene protected donors. J. Org. Chem. 75, 8383–8391 (2010).

    Article  CAS  Google Scholar 

  41. Frisch, M. et al. Gaussian 09 (Gaussian, 2010).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Natural Sciences and Engineering Research Council (NSERC) of Canada and the National Institutes of Health (NIH, GM62160) for grant support to D.A.P. and D.C., respectively. M.H. and G.E.G. thank the Ministère de l'Education Nationale de la Recherche et de la Technologie and NSERC, respectively, for scholarships. D.A.P. acknowledges support from the Canada Research Chairs programme.

Author information

Authors and Affiliations

Authors

Contributions

L.B., D.A.P. and D.C. designed the project and wrote the manuscript. M.H. carried out the synthetic work. G.E.G. conducted the computational studies. N.B. and M.H. performed the NMR study. M.H., N.B., L.B. and D.C. analysed the NMR studies, and G.E.G. and D.A.P. analysed the computational work. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Derek A. Pratt or David Crich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, M., Garrett, G., Birlirakis, N. et al. Dissecting the mechanisms of a class of chemical glycosylation using primary 13C kinetic isotope effects. Nature Chem 4, 663–667 (2012). https://doi.org/10.1038/nchem.1404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing