Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Revealing the stereospecific chemistry of the reaction of Cl with aligned CHD3(ν1 = 1)

Abstract

The concept of geometrical constraints and steric hindrance in reactions is implanted deeply in a chemist's ‘chemical intuition’. However, until now a true three-dimensional view of these steric effects has not been realized experimentally for any chemical reaction in full. Here we report the complete three-dimensional characterization of the sterics of a benchmark polyatomic reaction by measuring the dependence of the product state-resolved angular distributions on the spatial alignment of the reactive bond in a crossed molecular beam experiment. The results prove the existence of two distinct microscopic reaction mechanisms. Detailed analysis reveals that the origin of the stereodynamics in the HCl(ν = 0) + CD3(00) product channel can be captured by a textbook line-of-centres collision model. In contrast, a time-delay pathway, which includes a sharp switch from in-plane to out-of-plane scattering in the forwards direction, appears to be operative in forming the excited HCl(ν = 1) + CD3(00) product pair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the experimental set-up and scattering coordinate for data analysis.
Figure 2: Three normalized raw images at Ec = 3.8 kcal mol−1 for infrared laser polarization (the red double arrows) directed along three orthogonal axes (x, y and z).
Figure 3: Pair-correlated angular distributions observed in the xz scattering plane for infrared laser polarization pointing along the three orthogonal axes x, y and z.
Figure 4: Comparison of the experimentally determined PDDCS with the predictions from a LOC model, and a 3D visualization of how the reaction proceeds.

Similar content being viewed by others

References

  1. Levine, R. D. & Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity (Oxford Univ. Press, 1987).

    Google Scholar 

  2. Beuhler, R. J. Jr, Bernstein, R. B. & Kramer, K. H. Observation of the reactive asymmetry of methyl iodide: crossed beam study of the reaction of rubidium with oriented methyl iodide molecules. J. Am. Chem. Soc. 88, 5331–5332 (1966).

    Article  CAS  Google Scholar 

  3. Parker, D. H. & Bernstein, R. B. Oriented molecule beam via the electrostatic hexapole: preparation, characterization, and reactive scattering. Annu. Rev. Phys. Chem. 40, 561–595 (1989).

    Article  CAS  Google Scholar 

  4. Brooks, P. R. & Jones, E. M. Reactive scattering of K atoms from oriented CH3I molecules. J. Chem. Phys. 45, 3449–3450 (1966).

    Article  CAS  Google Scholar 

  5. Brooks, P. R. Reactions of oriented molecules. Science 193, 11–16 (1976).

    Article  CAS  Google Scholar 

  6. Zare, R. N. Optical preparation of aligned reagents. Ber. Bunsenges. Phys. Chem. 86, 422–425 (1982).

    Article  CAS  Google Scholar 

  7. Orr-Ewing, A. J. Dynamical stereochemistry of bimolecular reactions. J. Chem. Soc. Faraday Trans. 92, 881–900 (1996).

    Article  CAS  Google Scholar 

  8. Alexander, A. J., Brouard, M., Kalogerakis, K. S. & Simons, J. P. Chemistry with a sense of direction – the stereodynamics of bimolecular reactions. Chem. Soc. Rev. 27, 405–415 (2007).

    Article  Google Scholar 

  9. Loesch, H. J. & Stienkemeier, F. Steric effects in the state specific reaction Li + HF(ν = 1, j = 1, m = 0) → LiF + H. J. Chem. Phys. 98, 9570–9584 (1993).

    Article  CAS  Google Scholar 

  10. Loesch, H. J. Orientation and alignment in reactive beam collisions: recent progress. Annu. Rev. Phys. Chem. 46, 555–594 (1995).

    Article  CAS  Google Scholar 

  11. Wade, E. A. et al. Ion imaging studies of product rotational alignment in collisions of NO(2Π1/2, j = 0.5) with Ar. Chem. Phys. 301, 261–272 (2004).

    Article  CAS  Google Scholar 

  12. Simpson, W. R., Rakitzis, T. P., Kandel, S. A., Orr-Ewing, A. J. & Zare, R. N. Reaction of Cl with vibrationally excited CH4 and CHD3: state-to-state differential cross sections and steric effects for the HCl product. J. Chem. Phys. 103, 7313–7335 (1995).

    Article  CAS  Google Scholar 

  13. Kandel, S. A. et al. Cl + HD(ν = 1; j = 1, 2) reaction dynamics: comparison between theory and experiment. J. Chem. Phys. 112, 670–685 (2000).

    Article  CAS  Google Scholar 

  14. Wang, F., Lin, J-S. & Liu, K. Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom. Science 331, 900–903 (2011).

    Article  CAS  Google Scholar 

  15. Zhang, W., Kawamata, H. & Liu, K. CH stretching excitation in the early barrier F + CHD3 reaction inhibits CH bond cleavage. Science 325, 303–306 (2009).

    Article  CAS  Google Scholar 

  16. Wang, F. & Liu, K. Enlarging the reactive cone of acceptance by exciting the C–H bond in the O(3P) + CHD3 reaction. Chem. Sci. 1, 126–133 (2010).

    Article  CAS  Google Scholar 

  17. Aldegunde, J. et al. How reactants polarization can be used to change and unravel chemical reactivity. J. Phys. Chem. A 109, 6200–6217 (2005).

    Article  CAS  Google Scholar 

  18. Shafer-Ray, N. E., Orr-Ewing, A. J. & Zare, R. N. Beyond state-to-state differential cross sections: determination of product polarization in photoinitiated bimolecular reactions. J. Phys. Chem. 99, 7591–7603 (1995).

    Article  CAS  Google Scholar 

  19. Brouard, M. & Vallance, C. Tutorials in Molecular Reaction Dynamics Ch. 9 (The Royal Society of Chemistry, 2010).

    Google Scholar 

  20. Orr-Ewing, A. J., Simpson, W. R., Rakitzis, T. P. & Zare, R. N. Preparing reagents: time dependence of HCl(ν = 1, J) alignment following pulsed infrared excitation. Isr. J. Chem. 34, 95–102 (1994).

    Article  CAS  Google Scholar 

  21. Yan, S., Wu, Y-T., Zhang B., Yue, X-F. & Liu, K. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom? Science 316, 1723–1726 (2007).

    Article  CAS  Google Scholar 

  22. Zhou, J., Zhang, B., Lin, J. J. & Liu, K. Imaging the isotope effects in the ground state reaction of Cl + CH4 and CD4 . Mol. Phys. 13, 1757–1763 (2005).

    Article  Google Scholar 

  23. Aldegunde, J., Aoiz, F. J. & de Miranda, M. P. Quantum mechanical limits to the control of atom–diatom chemical reactions through the polarization of the reactants. Phys. Chem. Chem. Phys. 10, 1139–1150 (2008).

    Article  CAS  Google Scholar 

  24. Czako, G. & Bowman, J. M. Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science 334, 343–346 (2011).

    Article  CAS  Google Scholar 

  25. Czako, G. & Bowman, J. M. Accurate ab initio potential energy surface, thermochemistry, and dynamics of the Cl(2P, 2P3/2) + CH4 → HCl + CH3 and H + CH3Cl reactions. J. Chem. Phys. 136, 044307 (2012).

    Article  Google Scholar 

  26. Wang, X., Ben-Nun, M. & Levine, R. D. Peripheral dynamics of the Cl + CH4 → HCl + CH3 reaction: a classical trajectory computation. Chem. Phys. 197, 1–17 (1995).

    Article  CAS  Google Scholar 

  27. Zhang, B. & Liu, K. Imaging a reactive resonance in the Cl + CH4 reaction. J. Chem. Phys. 122, 101102 (2005).

    Article  Google Scholar 

  28. Yan, S., Wu, Y-T. & Liu, K. Tracking the energy flow along the reaction path. Proc. Natl Acad. Sci. USA 105, 12667–12672 (2008).

    Article  CAS  Google Scholar 

  29. Martinez, R., Gonzalez, M., Defazio, P. & Petrongolo, C. Searching for resonances in the reaction Cl + CH4 → HCl + CH3: quantum versus quasiclassical dynamics and comparison with experiments. J. Chem. Phys. 127, 104302 (2007).

    Article  Google Scholar 

  30. Remmert, S. M., Banks, S. T., Harvey, J. M., Orr-Ewing, A. J. & Clary, D. C. Reduced dimensionality spin-orbit dynamics of CH3 + HCl → CH4 + Cl on ab initio surfaces. J. Chem. Phys. 134, 204311 (2011).

    Article  Google Scholar 

  31. Manolopoulos, D. E. Chemical physics: a delay reaction. Nature 419, 266–267 (2002).

    Article  CAS  Google Scholar 

  32. Connor, J. N. L. Theory of forward glory scattering for chemical reactions. Phys. Chem. Chem. Phys. 6, 377–390 (2004).

    Article  CAS  Google Scholar 

  33. Lin, J. J., Zhou, J., Shiu, W. & Liu, K. Application of time-sliced ion velocity imaging to crossed molecular beam experiments. Rev. Sci. Instrum. 74, 2495–2500 (2003).

    Article  CAS  Google Scholar 

  34. Lin, J. J., Zhou, J., Shiu, W. & Liu, K. State-specific correlation of coincident product pairs in the F + CD4 reaction. Science 300, 966–969 (2003).

    Article  CAS  Google Scholar 

  35. Yoder, B. L., Bisson, R. & Beck, R. D. Steric effects in the chemisorptions of vibrationally excited methane on Ni(100). Science 329, 553–556 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J-S. Lin and C-M. Yang for assisting with the experiment. K.L. acknowledges M.P. de Miranda and F.J. Aoiz for clarifying the angular asymmetry of S1+2(θ). This work was supported by the National Science Council of Taiwan, Academia Sinica and the Air Force Office of Scientific Research (Grant No. AOARD-12-4020).

Author information

Authors and Affiliations

Authors

Contributions

K.L. conceived and designed the experiments and F.W. performed the experiments and analysed the data. F.W., T.P.R. and K.L. contributed to the analysis methods, discussed the results and commented on the manuscript. K.L. wrote the paper.

Corresponding author

Correspondence to Kopin Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Liu, K. & Rakitzis, T. Revealing the stereospecific chemistry of the reaction of Cl with aligned CHD3(ν1 = 1). Nature Chem 4, 636–641 (2012). https://doi.org/10.1038/nchem.1383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1383

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing