Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The synthesis, crystal structure and charge-transport properties of hexacene

Abstract

Acenes can be thought of as one-dimensional strips of graphene and they have the potential to be used in the next generation of electronic devices. However, because acenes larger than pentacene have been found to be unstable, it was generally accepted that they would not be particularly useful materials under normal conditions. Here, we show that, by using a physical vapour-transport method, platelet-shaped crystals of hexacene can be prepared from a monoketone precursor. These crystals are stable in the dark for a long period of time under ambient conditions. In the crystal, the molecules are arranged in herringbone arrays, quite similar to that observed for pentacene. A field-effect transistor made using a single crystal of hexacene displayed a hole mobility significantly higher than that of pentacene. This result suggests that it might be instructive to further explore the potential of other higher acenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of hexacene from precursor 1 by CO expulsion.
Figure 2: Characterization of the transformation from 1 to hexacene.
Figure 3: Absorption spectra of hexacene thin films.
Figure 4: X-ray crystallographic analysis of hexacene.
Figure 5: Single-crystal OFET and conductivity characteristics of hexacene.

Similar content being viewed by others

References

  1. Bendikov, M., Wudl, F. & Perepichka, D. F. Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics. Chem. Rev. 104, 4891–4946 (2004).

    Article  CAS  Google Scholar 

  2. Bao, Z. & Locklin, J. (eds) Organic Field-Effect Transistors (CRC Press, 2007).

    Book  Google Scholar 

  3. Anthony, J. E. The larger acenes: versatile organic semiconductors. Angew. Chem. Int. Ed. 47, 452–483 (2008).

    Article  CAS  Google Scholar 

  4. Bendikov, M. et al. Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. J. Am. Chem. Soc. 126, 7416–7417 (2004).

    Article  CAS  Google Scholar 

  5. Aleshin, A. N., Lee, J. Y., Chu, S. W., Kim, J. S. & Park, Y. W. Mobility studies of field-effect transistor structures based on anthracene single crystals. Appl. Phys. Lett. 84, 5383–5385 (2004).

    Article  CAS  Google Scholar 

  6. De Boer, R. W., Klapwijk, T. M. & Morpurgo, A. F. Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83, 4345–4347 (2003).

    Article  CAS  Google Scholar 

  7. Goldmann, C. et al. Hole mobility in organic single crystals measured by a ‘flip-crystal’ field-effect technique. J. Appl. Phys. 96, 2080–2086 (2004).

    Article  CAS  Google Scholar 

  8. Marschalk, C. Linear hexacenes. Bull. Soc. Chim. Fr. 6, 1112–1121 (1939).

    CAS  Google Scholar 

  9. Clar, E. Aromatic hydrocarbons. XXIV. Hexacene, a green simple hydrocarbon. Ber. Dtsch. Chem. Ges. B 72B, 1817–1821 (1939).

    Article  CAS  Google Scholar 

  10. Bailey, W. J. & Liao, C-W. Cyclic dienes. XI. New syntheses of hexacene and heptacene. Cyclic dienes. XI. New syntheses of hexacene and heptacene. J. Am. Chem. Soc. 77, 992–993 (1955).

    Article  CAS  Google Scholar 

  11. Angliker, H., Rommel, E. & Wirz, J. Electronic spectra of hexacene in solution (ground state, triplet state, dication and dianion). Chem. Phys. Lett. 87, 208–212 (1982).

    Article  CAS  Google Scholar 

  12. Champbell, R. B. & Robertson, J. M. The crystal structure of hexacene, and a revision of the crystallographic data for tetracene and pentacene. Acta Cryst. 15, 289–290 (1962).

    Article  Google Scholar 

  13. Purushothaman, B., Parkin S. R. & Anthony, J. E. Synthesis and stability of soluble hexacenes. Org. Lett. 12, 2060–2063 (2010).

    Article  CAS  Google Scholar 

  14. Kaur, I. et al. Substituent effects in pentacenes: gaining control over HOMO–LUMO gaps and photooxidative resistances. J. Am. Chem. Soc. 130, 16274–16286 (2008).

    Article  CAS  Google Scholar 

  15. Kaur, I., Stein, N. N., Kopreski, R. P. & Miller, G. P. Exploiting substituent effects for the synthesis of a photooxidatively resistant heptacene derivative. J. Am. Chem. Soc. 131, 3424–3425 (2009).

    Article  CAS  Google Scholar 

  16. Kaur, I., Jazdzyk, M., Stein, N. N., Prusevich, P. & Miller, G. P. Design, synthesis, and characterization of a persistent nonacene derivative. J. Am. Chem. Soc. 132, 1261–1263 (2010).

    Article  CAS  Google Scholar 

  17. Purushothaman, B., Bruzek, M., Parkin, S. R., Miller, A. F. & Anthony, J. E. Synthesis and structural characterization of crystalline nonacenes. Angew. Chem. Int. Ed. 50, 7013–7017 (2011).

    Article  CAS  Google Scholar 

  18. Mondal, R., Shah, B. K. & Neckers, D. C. Photogeneration of heptacene in a polymer matrix. J. Am. Chem. Soc. 128, 9612–9613 (2006).

    Article  CAS  Google Scholar 

  19. Mondal, R., Adhikari, R. M., Shah, B. K. & Neckers D. C. Revisiting the stability of hexacenes. Org. Lett. 9, 2505–2508 (2007).

    Article  CAS  Google Scholar 

  20. Tönshoff, C. & Bettinger, H. F. Photogeneration of octacene and nonacene. Angew. Chem. Int. Ed. 49, 4125–4128 (2010).

    Article  Google Scholar 

  21. Mondal, R., Okharimenko, A. N., Shah, K. & Neckers, D. C. Photodecarbonylation of α-diketones: a mechanistic study of reactions leading to acenes. J. Phys. Chem. B 112, 11–15 (2008).

    Article  CAS  Google Scholar 

  22. Yamada, H. et al. Photochemical synthesis of pentacene and its derivatives. Chem. Eur. J. 11, 6212–6220 (2005).

    Article  CAS  Google Scholar 

  23. Chen, K. Y., Hsieh, H. H., Wu, C. C., Hwang, J. J. & Chow, T. J. A new type of soluble pentacene precursor for organic thin-film transistors. Chem. Commun. 1065–1067 (2007).

  24. Chuang, T. H. et al. Photogeneration and thermal generation of pentacene from soluble precursors for OFET applications. Org. Lett. 10, 2869–2872 (2008).

    Article  CAS  Google Scholar 

  25. Watanabe, M. et al. Solution-processed organic micro crystal transistor based on tetraceno[2,3-b]thiophene from a monoketone precursor. J. Mater. Chem. 21, 11317–11322 (2011).

    Article  CAS  Google Scholar 

  26. Lai, C. H., Li, E., Chen, K. Y., Chow, T. J. & Chou, P. T. Theoretical investigation of cheletroptic decarbonylation reactions. J. Chem. Theor. Comput. 2, 1078–1084 (2006).

    Article  CAS  Google Scholar 

  27. Davydov, A. S. The theory of molecular excitons. Sov. Phys. Usp. 7, 145–178 (1964).

    Article  Google Scholar 

  28. Siebrand, W. & Zgierski, M. Z. in Springer Series in Solid-State Science Vol. 49 (eds Reineker, P., Haken, H. & Wolf, H. C.), Part V, 136–144 (Springer, 1983).

    Google Scholar 

  29. Miao, Q., Nguyen, T. Q., Someya, T., Blanchet, G. B. & Nuckolls, C. Synthesis, assembly, and thin film transistor of dihydrodiazapentacene: an isostructural motif for pentacene. J. Am. Chem. Soc. 125, 10284–10287 (2003).

    Article  CAS  Google Scholar 

  30. Stevens, B., Perez, S. R. & Ors, J. A. Photoperoxidation of unsaturated organic molecules. XIV. O21Δg acceptor properties and reactivity. J. Am. Chem. Soc. 96, 6846–6850 (1974).

    Article  CAS  Google Scholar 

  31. Mazur, M. & Blanchard, G. J. Photochemical and electrochemical oxidation reactions of surface-bound polycyclic aromatic hydrocarbons. J. Phys. Chem. B 108, 1038–1045 (2004).

    Article  CAS  Google Scholar 

  32. Maliakal, A., Raghavachari, K., Katz, H., Chandross, E. & Siegrist, T. Photochemical stability of pentacene and a substituted pentacene in solution and in thin films. Chem. Mater. 16, 4980–4986 (2004).

    Article  CAS  Google Scholar 

  33. Uda, M. Open counter for low energy electron detection. Jpn J. Appl. Phys. S24(4), 284–288 (1985).

    Article  Google Scholar 

  34. Laudise, R. A., Klic, C., Simpkins, P. G. & Siegrist, T. Physical vapor growth of organic semiconductors. J. Cryst. Growth 187, 449–454 (1998).

    Article  CAS  Google Scholar 

  35. Capelli, S. C., Albinati, A., Mason, S. A. & Willis, B. T. M. Molecular motion in crystalline naphthalene: analysis of multi-temperature X-ray and neutron diffraction data. J. Phys. Chem. A 110, 11695–11703 (2006).

    Article  CAS  Google Scholar 

  36. Brock, C. P. & Dunitz, J. D. Temperature dependence of thermal motion in crystalline anthracene. Acta Crystallogr. C 46, 795–806 (1990).

    Article  Google Scholar 

  37. Holmes, D., Kumaraswamy, S., Matzger, A. J. & Vollhardt, K. P. C. On the nature of nonplanarity in the [N]phenylenes. Chem. Eur. J. 5, 3399–3412 (1999).

    Article  CAS  Google Scholar 

  38. Mattheus, C. C. et al. Polymorphism in pentacene. Acta Crystallogr. C 57, 939–941 (2001).

    Article  CAS  Google Scholar 

  39. Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nature Mater. 3, 317–322 (2004).

    Article  CAS  Google Scholar 

  40. Yang, S. Y., Shin, K. & Park, C. E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv. Funct. Mater. 15, 1806–1814 (2005).

    Article  CAS  Google Scholar 

  41. Onclin, S., Ravoo, B. J. & Reinhoudt, D. N. Engineering silicon oxide surfaces using self-assembled monolayers. Angew. Chem. Int. Ed. 44, 6282–6304 (2005).

    Article  CAS  Google Scholar 

  42. Takeya, J. et al. Field-induced charge transport at the surface of pentacene single crystals: a method to study charge dynamics of two-dimensional electron systems in organic crystals. J. Appl. Phys. 94, 5800–5804 (2003).

    Article  CAS  Google Scholar 

  43. Yang, H. et al. Conducting AFM and 2D GIXD studies on pentacene thin films. J. Am. Chem. Soc. 127, 11542–11543 (2005).

    Article  CAS  Google Scholar 

  44. Kitamura, M. & Arakawa, Y. Pentacene-based organic field-effect transistors. J. Phys. Condens. Matter 20, 184011 (2008).

    Article  Google Scholar 

  45. Butko, V. Y., Chi, X., Lang, D. V. & Ramirez, A. P. Field-effect transistor on pentacene single crystal. Appl. Phys. Lett. 83, 4773–4775 (2003).

    Article  CAS  Google Scholar 

  46. Roberson, L. B. et al. Pentacene disproportionation during sublimation for field-effect transistors. J. Am. Chem. Soc. 127, 3069–3075 (2005).

    Article  CAS  Google Scholar 

  47. Reese, C., Chung, W. J., Ling, M. M., Roberts, M. & Bao, Z. High-performance microscale single-crystal transistors by lithography on an elastomer dielectric. Appl. Phys. Lett. 89, 202108 (2006).

    Article  Google Scholar 

  48. Jurchescu, O. D., Popinciuc, M., Van Wees, B. J. & Palstra, T. M. Interface-controlled, high-mobility organic transistors. Adv. Mater. 19, 688–692 (2007).

    Article  CAS  Google Scholar 

  49. Jurchescu, O. D., Baas, J. & Palstra, T. M. Effect of impurities on the mobility if single crystal pentacene. Appl. Phys. Lett. 84, 3061–3063 (2004).

    Article  CAS  Google Scholar 

  50. Parisse, P., Passacantando, M., Picozzi, S. & Ottaviano, L. Conductivity of the thin film phase of pentacene. Org. Electron. 7, 403–409 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D.-L.M. Tzou and M.-M. Chen (Academia Sinica) for measuring the CP-MAS 13C NMR spectrum. Computations were carried out using the computer facilities at the Academia Sinica Computing Center. This work was supported by the National Science Council and Academia Sinica in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

M.W. designed and performed the experiments and theoretical calculations. Y.J.C. measured and analysed the data. S.W.L. and M.M.I. designed the devices and analysed the data. T.H.C. and C.H.Y. fabricated the devices. K.G. carried out X-ray diffraction analysis on the crystals. M.W., Y.T.T. and T.S. co-wrote the paper. T.J.C. supervised the project.

Corresponding author

Correspondence to Tahsin J. Chow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3024 kb)

Supplementary information

Crystallographic data for hexacene using Cu radiation. (CIF 28 kb)

Supplementary information

Crystallographic data for hexacene using Mo radiation. (CIF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, M., Chang, Y., Liu, SW. et al. The synthesis, crystal structure and charge-transport properties of hexacene. Nature Chem 4, 574–578 (2012). https://doi.org/10.1038/nchem.1381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing