Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biomimetic radical polymerization via cooperative assembly of segregating templates

Abstract

Segregation and templating approaches have been honed by billions of years of evolution to direct many complex biological processes. Nature uses segregation to improve biochemical control by organizing reactants into defined, well-regulated environments, and the transfer of genetic information is a primary function of templating. The ribosome, wherein messenger RNA is translated into polypeptides, combines both techniques to allow for ideal biopolymer syntheses. Herein is presented a biomimetic segregation/templating approach to synthetic radical polymerization. Polymerization of a nucleobase-containing vinyl monomer in the presence of a complementary block copolymer template of low molecular weight yields high molecular weight (Mw up to ~400,000 g mol−1), extremely low polydispersity (≤1.08) daughter polymers. Control is attained by segregation of propagating radicals in discrete micelle cores (via cooperative assembly of dynamic template polymers). Significantly reduced bimolecular termination, combined with controlled propagation along a defined number of templates, ensures unprecedented control to afford well-defined high molecular weight polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic exchange and cooperative assembly of templates.
Figure 2: Microscopic characterization of micellar assemblies.
Figure 3: High MW daughter polymer and template.
Figure 4: Polymerization rate and MW versus conversion.

Similar content being viewed by others

References

  1. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).

    Article  CAS  Google Scholar 

  2. Monteiro, M. J. Nanoreactors for polymerizations and organic reactions. Macromolecules 43, 1159–1168 (2010).

    Article  CAS  Google Scholar 

  3. Sebakhy, K. O., Kessel, S. & Monteiro, M. J. Nanoreactors to synthesize well-defined polymer nanoparticles: decoupling particle size from molecular weight. Macromolecules 43, 9598–9600 (2010).

    Article  CAS  Google Scholar 

  4. Zetterlund, P. B. Controlled/living radical polymerization in nanoreactors: compartmentalization effects. Polym. Chem. 2, 534–549 (2011).

    Article  CAS  Google Scholar 

  5. Zetterlund, P. B. & Okubo, M. Compartmentalization in nitroxide-mediated radical polymerization in dispersed systems. Macromolecules 39, 8959–8967 (2006).

    Article  CAS  Google Scholar 

  6. Maehata, H., Buragina, C., Cunningham, M. & Keoshkerian, B. Compartmentalization in TEMPO-mediated styrene miniemulsion polymerization. Macromolecules 40, 7126–7131 (2007).

    Article  CAS  Google Scholar 

  7. Simms, R. W. & Cunningham, M. F. High molecular weight poly(butyl methacrylate) by reverse atom transfer radical polymerization in miniemulsion initiated by a redox system. Macromolecules 40, 860–866 (2007).

    Article  CAS  Google Scholar 

  8. Simms, R. W. & Cunningham, M. F. Compartmentalization of reverse atom transfer radical polymerization in miniemulsion. Macromolecules 41, 5148–5155 (2008).

    Article  CAS  Google Scholar 

  9. Tan, Y. Y. The synthesis of polymers by template polymerization. Prog. Polym. Sci. 19, 561–588 (1994).

    Article  CAS  Google Scholar 

  10. Polowinski, S. Template polymerization and co-polymerization. Prog. Polym. Sci. 27, 537–577 (2002).

    Article  CAS  Google Scholar 

  11. Inaki, Y. Synthetic nucleic acid analogs. Prog. Polym. Sci. 17, 515–570 (1992).

    Article  CAS  Google Scholar 

  12. Khan, A. et al. Hydrogen bond template-directed polymerization of protected 5′-acryloylnucleosides. Macromolecules 32, 6560–6564 (1999).

    Article  CAS  Google Scholar 

  13. Marsh, A., Khan, A., Haddleton, D. M. & Hannon, M. J. Atom transfer polymerization: use of uridine and adenosine derivatized monomers and initiators. Macromolecules 32, 8725–8731 (1999).

    Article  CAS  Google Scholar 

  14. Marsh, A., Khan, A., Garcia, M. & Haddleton, D. M. Copper(I) mediated radical polymerisation of uridine and adenosine monomers on a silica support. Chem. Commun. 2083–2084 (2000).

  15. Ilhan, F. et al. Giant vesicle formation through self-assembly of complementary random copolymers. J. Am. Chem. Soc. 122, 5895–5896 (2000).

    Article  CAS  Google Scholar 

  16. Thibault, R. J. et al. Specific interactions of complementary mono- and multivalent guests with recognition-induced polymersomes. J. Am. Chem. Soc. 124, 15249–15254 (2002).

    Article  CAS  Google Scholar 

  17. Lutz, J-F., Thünemann, A. F. & Nehring, R. Preparation by controlled radical polymerization and self-assembly via base-recognition of synthetic polymers bearing complementary nucleobases. J. Polym. Sci. Part A: Polym. Chem. 43, 4805–4818 (2005).

    Article  CAS  Google Scholar 

  18. Spijker, H. J., Dirks, A. J. & van Hest, J. C. M. Unusual rate enhancement in the thymine assisted ATRP process of adenine monomers. Polymer 46, 8528–8535 (2005).

    Article  CAS  Google Scholar 

  19. Spijker, H. J., Dirks, A. J. & van Hest, J. C. M. Synthesis and assembly behavior of nucleobase-functionalized block copolymers. J. Polym. Sci. Part A: Polym. Chem. 44, 4242–4250 (2006).

    Article  CAS  Google Scholar 

  20. Spijker, H. J., van Delft, F. L. & van Hest, J. C. M. Atom transfer radical polymerization of adenine, thymine, cytosine, and guanine nucleobase monomers. Macromolecules 40, 12–18 (2007).

    Article  CAS  Google Scholar 

  21. Mather, B. D. et al. Supramolecular triblock copolymers containing complementary nucleobase molecular recognition. Macromolecules 40, 6834–6845 (2007).

    Article  CAS  Google Scholar 

  22. Saito, K., Ingalls, L. R., Lee, J. & Warner, J. C. Core-bound polymeric micellar system based on photocrosslinking of thymine. Chem. Commun. 2503–2505 (2007).

  23. Kaur, G. et al. Bioinspired core-crosslinked micelles from thymine-functionalized amphiphilic block copolymers: hydrogen bonding and photo-crosslinking study. J. Polym. Sci. Part A: Polym. Chem. 49, 4121–4128 (2011).

    CAS  Google Scholar 

  24. Lo, P. K. & Sleiman, H. F. Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers. J. Am. Chem. Soc. 131, 4182–4183 (2009).

    Article  CAS  Google Scholar 

  25. Ida, S., Terashima, T., Ouchi, M. & Sawamoto, M. Selective radical addition with a designed heterobifunctional halide: a primary study toward sequence-controlled polymerization upon template effect. J. Am. Chem. Soc. 131, 10808–10809 (2009).

    Article  CAS  Google Scholar 

  26. Ida, S., Ouchi, M. & Sawamoto, M. Template-assisted selective radical addition toward sequence-regulated polymerization: Lariat capture of target monomer by template initiator. J. Am. Chem. Soc. 132, 14748–14750 (2010).

    Article  CAS  Google Scholar 

  27. Hibi, Y., Ouchi, M. & Sawamoto, M. Sequence-regulated radical polymerization with a metal-templated monomer: repetitive ABA sequence by double cyclopolymerization. Angew. Chem. Int. Ed. 50, 7434–7437 (2011).

    Article  CAS  Google Scholar 

  28. Hibi, Y. et al. Design of AB divinyl ‘template monomers’ toward alternating sequence control in metal-catalyzed living radical polymerization. Polym. Chem. 2, 341–347 (2011).

    Article  CAS  Google Scholar 

  29. Ida, S., Ouchi, M. & Sawamoto, M. Designer template initiator for sequence regulated polymerization: systems design for substrate-selective metal-catalyzed radical addition and living radical polymerization. Macromol. Rapid Commun. 32, 209–214 (2011).

    Article  CAS  Google Scholar 

  30. Harth, E. et al. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc. 124, 8653–8660 (2002).

    Article  CAS  Google Scholar 

  31. Cherian, A. E., Sun, F. C., Sheiko, S. S. & Coates, G. W. Formation of nanoparticles by intramolecular cross-linking: following the reaction progress of single polymer chains by atomic force microscopy. J. Am. Chem. Soc. 129, 11350–11351 (2007).

    Article  CAS  Google Scholar 

  32. Foster, E. J., Berda, E. B. & Meijer, E. W. Metastable supramolecular polymer nanoparticles via intramolecular collapse of single polymer chains. J. Am. Chem. Soc. 131, 6964–6966 (2009).

    Article  CAS  Google Scholar 

  33. Mes, T., van der Weegen, R., Palmans, A. R. A. & Meijer, E. W. Single-chain polymeric nanoparticles by stepwise folding. Angew. Chem. Int. Ed. 50, 5085–5089 (2011).

    Article  CAS  Google Scholar 

  34. Terashima, T. et al. Single-chain folding of polymers for catalytic systems in water. J. Am. Chem. Soc. 133, 4742–4745 (2011).

    Article  CAS  Google Scholar 

  35. Schmidt, B. V. K. J., Fechler, N., Falkenhagen, J. & Lutz, J-F. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nature Chem. 3, 234–238 (2011).

    Article  CAS  Google Scholar 

  36. Yang, X. et al. Synthesis of 1-(4-vinylbenzyl)thymine and its polymerization by RAFT and ATRP techniques. Polym. Preprints 45, 1061–1062 (2004).

    CAS  Google Scholar 

  37. Fukuda, T. et al. Mechanisms and kinetics of nitroxide-controlled free radical polymerization. Macromolecules 29, 6393–6398 (1996).

    Article  CAS  Google Scholar 

  38. Goto, A. & Fukuda, T. Kinetics of living radical polymerization. Prog. Polym. Sci. 29, 329–385 (2004).

    Article  CAS  Google Scholar 

  39. Kelley, E. G. et al. Structural changes in block copolymer micelles induced by cosolvent mixtures. Soft Matter 7, 7094–7102 (2011).

    Article  CAS  Google Scholar 

  40. Patterson, J. P. et al. A simple approach to characterizing block copolymer assemblies: graphene oxide supports for high contrast multi-technique imaging. Soft Matter 8, 3322–3328 (2012).

    Article  CAS  Google Scholar 

  41. Gons, J., Straatman, L. J. P. & Challa, G. Radical polymerization of methyl methacrylate in the presence of isotactic poly(methyl methacrylate). VIII. Influence of template concentration. J. Polym. Sci. Polym. Chem. Ed. 16, 427–434 (1978).

    Article  CAS  Google Scholar 

  42. Van de Grampel, H. T., Tan, Y. Y. & Challa, G. Template polymerization of N-vinylimidazole along poly(methacrylic acid) in water. 1. Influence of template concentration. Macromolecules 23, 5209–5216 (1990).

    Article  CAS  Google Scholar 

  43. Van de Grampel, H. T., Tan, Y. Y. & Challa, G. Template polymerization of N-vinylimidazole along poly(methacrylic acid) in water. 3. Molecular weights of the formed polymers. Macromolecules 24, 3773–3778 (1991).

    Article  CAS  Google Scholar 

  44. Ganeva, D. E. et al. Particle formation in ab initio RAFT mediated emulsion polymerization systems. Macromolecules 40, 6181–6189 (2007).

    Article  CAS  Google Scholar 

  45. Uemura, T., Ono, Y., Kitagawa, K. & Kitagawa, S. Radical polymerization of vinyl monomers in porous coordination polymers: nanochannel size effects on reactivity, molecular weight, and stereostructure. Macromolecules 41, 87–94 (2008).

    Article  CAS  Google Scholar 

  46. Serizawa, T., Hamada, K. & Akashi, M. Polymerization within a molecular-scale stereoregular template. Nature 429, 52–55 (2004).

    Article  CAS  Google Scholar 

  47. Percec, V., Ahn, C. H. & Barboiu, B. Self-encapsulation, acceleration and control in the radical polymerization of monodendritic monomers via self-assembly. J. Am. Chem. Soc. 119, 12978–12979 (1997).

    Article  CAS  Google Scholar 

  48. Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998).

    Article  CAS  Google Scholar 

  49. Rzayev, J. & Penelle, J. HP-RAFT: a free-radical polymerization technique for obtaining living polymers of ultrahigh molecular weights. Angew. Chem. Int. Ed. 43, 1691–1694 (2004).

    Article  CAS  Google Scholar 

  50. Percec, V. et al. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 128, 14156–14165 (2006).

    Article  CAS  Google Scholar 

  51. Nicolaÿ, R., Kwak, Y. & Matyjaszewski, K. A green route to well-defined high-molecular-weight (co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. Angew. Chem. Int. Ed. 49, 541–544 (2010).

    Article  Google Scholar 

  52. Ouchi, M., Badi, N., Lutz, J-F. & Sawamoto, M. Single-chain technology using discrete synthetic macromolecules. Nature Chem. 3, 917–924 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Warwick and the Engineering and Physical Sciences Research Council (grant reference: EP/H019146/1) for funding. The authors also acknowledge the Precision Polymer Materials Research Networking Programme of the European Science Foundation for funding. Some items of equipment used in this research were funded by Birmingham Science City, with support from Advantage West Midlands, and part funded by the European Regional Development Fund. We thank the Wellcome Trust (grant reference 055663/Z/98/Z) for the electron microscopy facility at Warwick. We thank O. Colombani, C. Chassenieux and T. Nicolai (all at Université du Maine, Le Mans, France) and A.H. Lu (University of Warwick) for assistance and advice on light-scattering experiments. We thank T. Wilks (University of Warwick) for assistance with graphic illustrations and C. Hansell (University of Warwick) for assistance with proof-reading. We would also like to thank M. Jewett (Northwestern University), P. Booth (University of Bristol) and A. Ellington (University of Texas, Austin) for insightful scientific discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.M. designed and performed the experiments and wrote the paper. J.P.P. performed the microscopy (TEM and AFM) and DSC, assisted with SLS and some synthesis and P.B.Z. designed the experiments. R.K.O.R. conceived and obtained funding for the project, designed the experiments, oversaw the research and finalized the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rachel K. O'Reilly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2863 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHale, R., Patterson, J., Zetterlund, P. et al. Biomimetic radical polymerization via cooperative assembly of segregating templates. Nature Chem 4, 491–497 (2012). https://doi.org/10.1038/nchem.1331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing