Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A soluble copper–bipyridine water-oxidation electrocatalyst

Abstract

The oxidation of water to O2 is a key challenge in the production of chemical fuels from electricity. Although several catalysts have been developed for this reaction, substantial challenges remain towards the ultimate goal of an efficient, inexpensive and robust electrocatalyst. Reported here is the first copper-based catalyst for electrolytic water oxidation. Copper–bipyridine–hydroxo complexes rapidly form in situ from simple commercially available copper salts and bipyridine at high pH. Cyclic voltammetry of these solutions at pH 11.8–13.3 shows large, irreversible currents, indicative of catalysis. The production of O2 is demonstrated both electrochemically and with a fluorescence probe. Catalysis occurs at about 750 mV overpotential. Electrochemical, electron paramagnetic resonance and other studies indicate that the catalyst is a soluble molecular species, that the dominant species in the catalytically active solutions is (2,2′-bipyridine)Cu(OH)2 and that this is among the most rapid homogeneous water-oxidation catalysts, with a turnover frequency of ~100 s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CVs of solutions containing 1.0 mM total Cu and bpy.
Figure 2: Evolution of O2 during bulk electrolysis.
Figure 3: The aqueous speciation of a 1:1 copper(II):bpy solution, observed by EPR.
Figure 4: Voltammograms of 100 µM bpy/Cu2+ solutions showing the variation in catalytic current with pH.
Figure 5: Dependence of the catalytic current on copper concentration.

Similar content being viewed by others

References

  1. Eisenberg, R. & Gray, H. B. Preface on making oxygen. Inorg. Chem. 47, 1697–1699 (2008).

    Article  CAS  Google Scholar 

  2. Sala, X., Romero, I., Rodríguez, M., Escriche, L. & Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 2842–2852 (2009).

    Article  CAS  Google Scholar 

  3. Hurst, J. K. Chemistry in pursuit of water oxidation catalysts for solar fuel production. Science 328, 315–316 (2010).

    Article  CAS  Google Scholar 

  4. US Department of Energy. Report of the Basic Research Needs for Solar Energy Utilization 38–46, 135–183, (2005); http://science.energy.gov/~/media/bes/pdf/reports/files/seu_rpt.pdf.

  5. McEvoy, J. P. & Brudvig, G. W. Water-splitting chemistry of photosystem II. Chem. Rev. 106, 4455–4483 (2006).

    Article  CAS  Google Scholar 

  6. Trassati, S. in The Electrochemistry of Novel Materials (eds Lipkowski, J. & Ross, P. N.) Ch. 5, 207–296 (VCH, 1994).

    Google Scholar 

  7. McAlpin, J. G. et al. Electronic structure description of a [Co(III)3Co(IV)O4] cluster: a model for the paramagnetic intermediate in cobalt-catalyzed water oxidation. J. Am. Chem. Soc. 133, 15444–15452 (2011).

    Article  CAS  Google Scholar 

  8. Gorlin, Y. & Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 132, 13612–13614 (2010).

    Article  CAS  Google Scholar 

  9. Concepcion, J. J. et al. Making oxygen with ruthenium complexes. Acc. Chem. Res. 42, 1954–1965 (2009).

    Article  CAS  Google Scholar 

  10. Tseng, H. W., Zong, R., Muckerman, J. T. & Thummel, R. Mononuclear ruthenium(II) complexes that catalyze water oxidation. Inorg. Chem. 47, 11763–11773 (2008).

    Article  CAS  Google Scholar 

  11. Dismukes, G. C. et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    Article  CAS  Google Scholar 

  12. Ellis, W. C., McDaniel, N. D., Bernhard, S. & Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    Article  CAS  Google Scholar 

  13. Lalrempuia, R., McDaniel, N. D., Muller-Bunz, H., Bernhard, S. & Albrecht, M. Water oxidation catalyzed by strong carbene-type donor–ligand complexes of iridium. Angew. Chem. Int. Ed. 49, 9765–9768 (2010).

    Article  CAS  Google Scholar 

  14. Wasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem. Commun. 47, 4249–4251 (2011).

    Article  CAS  Google Scholar 

  15. Schley, N. D. et al. Distinguishing homogeneous from heterogeneous catalysis in electrode-driven water oxidation with molecular iridium complexes. J. Am. Chem. Soc. 133, 10473–10481 (2011).

    Article  CAS  Google Scholar 

  16. Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comperable to that of photosystem II. Nature Chem. 4, 418–423 (2012).

    Article  CAS  Google Scholar 

  17. Lewis, E. A. & Tolman, W. B. Reactivity of dioxygen, μ-copper systems. Chem. Rev. 104, 1047–1076 (2004).

    Article  CAS  Google Scholar 

  18. Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. Structure and spectroscopy of copper–dioxygen complexes. Chem. Rev. 104, 1013–1046 (2004).

    Article  CAS  Google Scholar 

  19. Hayashi, H. et al. A bis(μ-oxo)dicopper(III) complex with aromatic nitrogen donors: structural characterization and reversible conversion between copper(I) and bis(μ-oxo)dicopper(III) species. J. Am. Chem. Soc. 122, 2124–2125 (2000).

    Article  CAS  Google Scholar 

  20. Ottenwaelder, X. et al. Reversible O–O bond cleavage in copper–dioxygen isomers: impact of anion basicity. J. Am. Chem. Soc. 128, 9268–9269 (2006).

    Article  CAS  Google Scholar 

  21. Maiti, D., Woertink, J. S., Narducci Sarjeant, A. A., Solomon, E. I. & Karlin, K. D. Copper dioxygen adducts: formation of bis(μ-oxo)dicopper(III) versus (η-1,2)peroxodicopper(II) complexes with small changes in one pyridyl-ligand substituent. Inorg. Chem. 47, 3787–3800 (2008).

    Article  CAS  Google Scholar 

  22. Kunishita, A. et al. Reactions of copper(II)–H2O2 adducts supported by tridentate bis(2-pyridylmethyl)amine ligands: sensitivity to solvent and variations in ligand substitution. Inorg. Chem. 47, 8222–8232 (2008).

    Article  CAS  Google Scholar 

  23. Brushett, F. R. et al. A carbon-supported copper complex of 3,5-diamino-1,2,4-triazole as a cathode catalyst for alkaline fuel cell applications. J. Am. Chem. Soc. 132, 12185–12187 (2010).

    Article  CAS  Google Scholar 

  24. McCrory, C. C. L. et al. Electrocatalytic O2 reduction by covalently immobilized mononuclear copper(I) complexes: evidence for a binuclear Cu2O2 intermediate. J. Am. Chem. Soc. 133, 3696–3699 (2011).

    Article  CAS  Google Scholar 

  25. Elizarova, G. L., Matvienko, L. G., Lozhkina, N. V., Maizlish, V. E. & Parmon, V. N. Homogeneous catalysts for dioxygen evolution from water. Oxidation of water by trisbipyradylruthenium(III) in the presence of metallophthalocyanines. React. Kinet. Catal. Lett. 16, 285–288 (1981).

    Article  CAS  Google Scholar 

  26. Elizarova, G. L., Matvienko, L. G., Lozhkina, N. V., Parmon, V. N. & Zamaraev, K. I. Homogeneous catalysis for dioxygen evolution from water. Water oxidation by trisbipyridylruthenium(III) in the presence of cobalt, iron, and copper complexes. React. Kinet. Catal. Lett. 16, 191–194 (1981).

    Article  CAS  Google Scholar 

  27. Ikeda, S. et al. Mechano-catalytic overall water splitting. Chem. Commun. 2185–2186 (1998).

  28. de Jongh, P. E., Vanmaekelbergh, D. & Kelly, J. J. Cu2O: a catalyst for the photochemical decomposition of water? Chem. Commun. 1069–1070 (1999).

  29. Walker, A. V. & Yates, J. T. Does cuprous oxide photosplit water? J. Phys. Chem. B 104, 9038–9043 (2000).

    Article  CAS  Google Scholar 

  30. Harris, C. M., Sinn, E., Walker, W. R. & Woolliams, P. R. Nitrogenous chelate complexes of transition metals. V. Binuclear hydroxy-bridged copper(II) complexes of 1,10-phenanthroline and 2,2′-bipyridyl. Aust. J. Chem. 21, 631–640 (1968).

    Article  CAS  Google Scholar 

  31. Yeager, E. Electrocatalysts for O2 reduction. Electrochim. Acta 29, 1527–1537 (1984).

    Article  CAS  Google Scholar 

  32. Hetterscheid, D. G. H. & Reek, J. N. H. Me2-NHC based robust Ir catalyst for efficient water oxidation. Chem. Commun. 47, 2712–2714 (2011).

    Article  CAS  Google Scholar 

  33. Yin, Q. S. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  34. Nakagawa, T., Bjorge, N. S. & Murray, R. W. Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J. Am. Chem. Soc. 131, 15578–15579 (2009).

    Article  CAS  Google Scholar 

  35. Minguzzi, A., Fan, F-R. F., Vertova, A., Rondinini, S. & Bard, A. J. Dynamic potential–pH diagrams application to electrocatalysts for water oxidation. Chem. Sci. 3, 217–229 (2012).

    Article  CAS  Google Scholar 

  36. Castro, I. et al. Synthesis, crystal structure and magnetic properties of di-μ-hydroxo-bis[(2,2′-bipyridine)(trifluoromethanesulfonato-O)-copper(II)]. J. Chem. Soc. Dalton Trans. 47–52 (1992).

  37. Figgis, B. N., Mason, R., Smith, A. R. P., Varghese, J. N. & Williams, G. A. Spin density and structure of aquabis(2,2′-bipyridine)di-μ-hydroxosulphatodicopper(II) tetrahydrate at 4.2 K. J. Chem. Soc. Dalton Trans. 703–711 (1983).

  38. Garribba, E., Micera, G., Sanna, D. & Strinna-Erre, L. The Cu(II)-2,2′-bipyridine system revisited. Inorg. Chim. Acta 299, 253–261 (2000).

    Article  CAS  Google Scholar 

  39. Majeste, R. J. & Meyers, E. A. Crystal and molecular structure of bisbipyridyl-μ-dihydroxo-dicopper(II) nitrate. J. Phys. Chem. 74, 3497–3500 (1970).

    Article  CAS  Google Scholar 

  40. Prenesti, E., Daniele, P. G., Berto, S. & Toso, S. Spectrum–structure correlation for visible absorption spectra of copper(II) complexes showing axial co-ordination in aqueous solution. Polyhedron 25, 2815–2823 (2006).

    Article  CAS  Google Scholar 

  41. Toofan, M., Boushehri, A. & Mazhar Ul, H. Crystal and molecular structure of di-μ-hydroxo-bis[bipyridylcopper(II)] diperchlorate. J. Chem. Soc. Dalton Trans. 217–219 (1976).

  42. Fabian, I. Hydrolytic reactions of copper(II) bipyridine complexes. Inorg. Chem. 28, 3805–3807 (1989).

    Article  CAS  Google Scholar 

  43. Zanello, P. Inorganic Electrochemistry: Theory, Practice, and Application (Royal Society for Chemistry, 2003).

    Google Scholar 

  44. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

    Google Scholar 

  45. Savéant, J-M. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem. Rev. 108, 2348–2378 (2008).

    Article  Google Scholar 

  46. Savéant, J. M. & Vianello, E. Potential-sweep chronoamperometry: kinetic currents for first-order chemical reaction parallel to electron-transfer process (catalytic currents). Electrochim. Acta 10, 905–920 (1965).

    Article  Google Scholar 

  47. Stracke, J. J. & Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: Identification of heterogeneous CoOx as the dominant catalyst. J. Am. Chem. Soc. 133, 14872–14875 (2011).

    Article  CAS  Google Scholar 

  48. Gudavarthy, R. V. et al. Epitaxial electrodeposition of chiral CuO films from copper(II) complexes of malic acid on Cu(111) and Cu(110) single crystals. J. Mat. Chem. 21, 6209–6216 (2011).

    Article  CAS  Google Scholar 

  49. Hurst, J. K., Cape, J. L., Clark, A. E., Das, S. & Qin, C. Mechanisms of water oxidation catalyzed by ruthenium diimine complexes. Inorg. Chem. 47, 1753–1764 (2008).

    Article  CAS  Google Scholar 

  50. Waidmann, C. R. Investigating Proton Coupled Electron Transfers in Oxovanadium and Dimeric Copper-Oxo Systems: the Importance of Instrinsic Barriers and Reaction Driving Force PhD thesis, University of Washington (2009).

    Google Scholar 

Download references

Acknowledgements

We thank the US National Science Foundation Center for Enabling New Technologies Through Catalysis for support. We are grateful to C. Waidmann for his studies of the oxidation of dimeric copper complexes50 that laid critical groundwork for the work reported here, and to W.B. Tolman for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.M.B. and J.M.M. conceived and designed the experiments, S.M.B. performed all the experiments, S.M.B., K.I.G. and J.M.M. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to James M. Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, S., Goldberg, K. & Mayer, J. A soluble copper–bipyridine water-oxidation electrocatalyst. Nature Chem 4, 498–502 (2012). https://doi.org/10.1038/nchem.1350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing