Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A stable germanone as the first isolated heavy ketone with a terminal oxygen atom

Abstract

The carbon–oxygen double bond of ketones (R2C=O) makes them among the most important organic compounds, but their homologues, heavy ketones with an E=O double bond (E = Si, Ge, Sn or Pb), had not been isolated as stable compounds. Their unavailability as monomeric molecules is ascribed to their high tendency for intermolecular oligomerization or polymerization via opening of the E=O double bond. Can such an intermolecular process be inhibited by bulky protecting groups? We now report that it can, with the first isolation of a monomeric germanium ketone analogue (Eind)2Ge=O (Eind = 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl), stabilized by appropriately designed bulky Eind groups, with a planar tricoordinate germanium atom. Computational studies and chemical reactions suggest the Ge=O double bond is highly polarized with a contribution of a charge-separated form (Eind)2Ge+−O. The germanone thus exhibits unique reactivities that are not observed with ordinary ketones, including the spontaneous trapping of CO2 gas to provide a cyclic addition product.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Synthetic scheme for 1 and 2, together with the charge-separated canonical form 2′.
Figure 3: Molecular structures of 1 and 2.
Figure 4: Selected MOs and their energy levels (in eV) for 2, together with the chemical structure.
Figure 5: Electrostatic potential maps drawn by GaussView.
Figure 6: Reactions of 2.

Similar content being viewed by others

References

  1. Kapp, J., Remko, M. & Schleyer, P. v. R. H2XO and (CH3)2XO compounds (X = C, Si, Ge, Sn, Pb): double bonds vs carbene-like structures – can the metal compounds exist at all? J. Am. Chem. Soc. 118, 5745–5751 (1996).

    Article  CAS  Google Scholar 

  2. Kapp, J., Remko, M. & Schleyer, P. v. R. Reactions of H2X=XH2 and H2X=O double bonds (X = Si, Ge, Sn, Pb): are 1,3-dioxa-2,4-dimetaletanes unusual molecules? Inorg. Chem. 36, 4241–4246 (1997).

    Article  CAS  Google Scholar 

  3. Davidson, P. J. & Lappert, M. F. Stabilisation of metals in a low co-ordinative environment using the bis(trimethylsilyl)methyl ligand; coloured SnII and PbII alkyls, M[CH(SiMe3)2]2 . J. Chem. Soc. Chem. Commun. 317 (1973).

  4. Brook, A. G., Abdesaken, F., Gutekunst, B., Gutekunst, G. & Kallury, R. K. A solid silaethene: isolation and characterization. J. Chem. Soc. Chem. Commun. 191–192 (1981).

  5. West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a stable compound containing a silicon–silicon double bond. Science 214, 1343–1344 (1981).

    Article  CAS  Google Scholar 

  6. Yoshifuji, M., Shima, I., Inamoto, N., Hirotsu, K. & Higuchi, T. Synthesis and structure of bis(2,4,6-tri-tert-butylphenyl)diphosphene: isolation of a true ‘phosphobenzene’. J. Am. Chem. Soc. 103, 4587–4589 (1981).

    Article  CAS  Google Scholar 

  7. Ishida, S., Iwamoto, T., Kabuto, C. & Kira, M. A stable silicon-based allene analogue with a formally sp-hybridized silicon atom. Nature 421, 725–727 (2003).

    Article  CAS  Google Scholar 

  8. Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon–silicon triple bond. Science 305, 1755–1757 (2004).

    Article  CAS  Google Scholar 

  9. Wiberg, N., Vasisht, S. K., Fischer, G. & Mayer, P. Disilynes. III A relatively stable disilyne RSiSiR (R = SiMe(SitBu3)2). Z. Anorg. Allg. Chem. 630, 1823–1828 (2004).

    Article  CAS  Google Scholar 

  10. Wang, Y. et al. A stable silicon(0) compound with a Si=Si double bond. Science 321, 1069–1071 (2008).

    Article  CAS  Google Scholar 

  11. Abersfelder, K., White, A. J. P., Rzepa, H. S. & Scheschkewitz, D. A tricyclic aromatic isomer of hexasilabenzene. Science 327, 564–566 (2010).

    Article  CAS  Google Scholar 

  12. Suzuki, K. et al. A planar rhombic charge-separated tetrasilacyclobutadiene. Science 331, 1306–1309 (2011).

    Article  CAS  Google Scholar 

  13. Tokitoh, N., Matsumoto, T. & Okazaki, R. The chemistry of germanium-containing heavy ketones. Bull. Chem. Soc. Jpn 72, 1665–1684 (1999).

    Article  CAS  Google Scholar 

  14. Okazaki, R. & Tokitoh, N. Heavy ketones, the heavier element congeners of a ketone. Acc. Chem. Res. 33, 625–630 (2000).

    Article  CAS  Google Scholar 

  15. Tokitoh, N. & Okazaki, R. The Chemistry of Organic Germanium, Tin and Lead Compounds Vol. 2 (ed. Rappoport, Z.) 843–901 (Wiley, 2002).

    Book  Google Scholar 

  16. Tokitoh, N., Matsumoto, T., Manmaru, K. & Okazaki, R. Synthesis and crystal structure of the first stable diarylgermanethione. J. Am. Chem. Soc. 115, 8855–8856 (1993).

    Article  CAS  Google Scholar 

  17. Suzuki, H., Tokitoh, N., Nagase, S. & Okazaki, R. The first genuine silicon–sulfur double-bond compound: synthesis and crystal structure of a kinetically stabilized silanethione. J. Am. Chem. Soc. 116, 11578–11579 (1994).

    Article  CAS  Google Scholar 

  18. Saito, M., Tokitoh, N. & Okazaki, R. The first kinetically stabilized stannaneselone and diselenastannirane: synthesis by deselenation of a tetraselenastannolane and structures. J. Am. Chem. Soc. 119, 11124–11125 (1997).

    Article  CAS  Google Scholar 

  19. Suzuki, H., Tokitoh, N., Okazaki, R., Nagase, S. & Goto, M. Synthesis, structure, and reactivity of the first kinetically stabilized silanethione. J. Am. Chem. Soc. 120, 11096–11105 (1998).

    Article  CAS  Google Scholar 

  20. Iwamoto, T., Sato, K., Ishida, S., Kabuto, C. & Kira, M. Synthesis, properties, and reactions of a series of stable dialkyl-substituted silicon–chalcogen doubly bonded compounds. J. Am. Chem. Soc. 128, 16914–16920 (2006).

    Article  CAS  Google Scholar 

  21. Raabe, G. & Michl, J. The Chemistry of Organic Silicon Compounds Part 2 (eds Patai, S. & Rappoport, Z.) 1015–1142 (Wiley, 1989).

    Book  Google Scholar 

  22. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  Google Scholar 

  23. Kipping, F. S. & Lloyd, L. L. Organic derivatives of silicon. Triphenylsilicol and alkyloxysilicon chlorides. J. Chem. Soc. Trans. 79, 449–459 (1901).

    Article  CAS  Google Scholar 

  24. Barrau, J., Massol, M., Mesnard, D. & Satgé, J. Synthèse de 4-germa 1,3-dioxannes par insertion de dérivés carbonylés sur divers oxétannes germaniés. J. Organomet. Chem. 30, C67–C69 (1971).

    Article  CAS  Google Scholar 

  25. Barrau, J., Escudié, J. & Satgé, J. Multiply bonded germanium species. Chem. Rev. 90, 283–319 (1990).

    Article  CAS  Google Scholar 

  26. Veith, M., Becker, S. & Huch, V. A base-stabilized Ge–S double bond. Angew. Chem. Int. Ed. Engl. 28, 1237–1238 (1989).

    Article  Google Scholar 

  27. Takeda, N., Tokitoh, N. & Okazaki, R. Reaction of a stable silylene–isocyanide complex with nitrile oxides: a new approach to the generation of a silanone. Chem. Lett. 244–245 (2000).

  28. Iwamoto, T., Masuda, H., Ishida, S., Kabuto, C. & Kira, M. Diverse reactions of nitroxide–radical adducts of silylene, germylene, and stannylene. J. Organomet. Chem. 689, 1337–1341 (2004).

    Article  CAS  Google Scholar 

  29. Ibrahim Al-Rafia, S. M., Lummis, P. A., Ferguson, M. J., McDonald, R. & Rivard, E. Low-coordinate germylene and stannylene heterocycles featuring sterically tunable bis(amido)silyl ligands. Inorg. Chem. 49, 9709–9717 (2010).

    Article  Google Scholar 

  30. Tokitoh, N., Matsumoto, T. & Okazaki, R. Formation and reactions of the first diarylgermanone stable in solution. Chem. Lett. 1087–1088 (1995).

  31. Jutzi, P., Schmidt, H., Neumann, B. & Stammler, H-G. Bis(2,4,6-tri-tert-butylphenyl)germylene reinvestigated: crystal structure, Lewis acid catalyzed C–H insertion, and oxidation to an unstable germanone. Organometallics 15, 741–746 (1996).

    Article  CAS  Google Scholar 

  32. Matsumoto, T., Tokitoh, N. & Okazaki, R. First oxazagermete: synthesis, structure and thermal cycloreversion into a germanone. Chem. Commun. 1553–1554 (1997).

  33. Wegner, G. L., Berger, R. J. F., Schier, A. & Schmidbaur, H. Ligand-protected strain-free diarylgermylenes. Organometallics 20, 418–423 (2001).

    Article  CAS  Google Scholar 

  34. Pu, L., Hardman, N. J. & Power, P. P. Attempted isolation of heavier group 14 element ketone analogues: effect of O–H…π-Ar hydrogen bonding on geometry. Organometallics 20, 5105–5109 (2001).

    Article  CAS  Google Scholar 

  35. Xiong, Y., Yao, S. & Driess, M. An isolable NHC-supported silanone. J. Am. Chem. Soc. 131, 7562–7563 (2009).

    Article  CAS  Google Scholar 

  36. Yao, S., Xiong, Y. & Driess, M. From NHC→germylenes to stable NHC→germanone complexes. Chem. Commun. 6466–6468 (2009).

  37. Xiong, Y., Yao, S., Müller, R., Kaupp, M. & Driess, M. From silicon(II)-based dioxygen activation to adducts of elusive dioxasiliranes and sila-ureas stable at room temperature. Nature Chem. 2, 577–580 (2010).

    Article  CAS  Google Scholar 

  38. Yao, S., Xiong, Y., Wang, W. & Driess, M. Synthesis, structure, and reactivity of a pyridine-stabilized germanone. Chem. Eur. J. 17, 4890–4895 (2011).

    Article  CAS  Google Scholar 

  39. Zabula, A. V. et al. Trapping of tin(II) and lead(II) homologues of carbon monoxide by a benzannulated lutidine-bridged bisstannylene. J. Am. Chem. Soc. 130, 5648–5649 (2008).

    Article  CAS  Google Scholar 

  40. Fukazawa, A., Li, Y., Yamaguchi, S., Tsuji, H. & Tamao, K. Coplanar oligo(p-phenylenedisilenylene)s based on the octaethyl-substituted s-hydrindacenyl groups. J. Am. Chem. Soc. 129, 14164–14165 (2007).

    Article  CAS  Google Scholar 

  41. Matsuo, T. et al. Synthesis and structures of a series of bulky ‘Rind-Br’ based on a rigid fused-ring s-hydrindacene skeleton. Bull. Chem. Soc. Jpn 84, 1178–1191 (2011).

    Article  CAS  Google Scholar 

  42. Allen, F. H. The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr. B 58, 380–388 (2002).

    Article  Google Scholar 

  43. Matsumoto, T., Tokitoh, N. & Okazaki, R. The first kinetically stabilized germanethiones and germaneselones: syntheses, structures, and reactivities. J. Am. Chem. Soc. 121, 8811–8824 (1999).

    Article  CAS  Google Scholar 

  44. Tokitoh, N., Matsumoto, T. & Okazaki, R. First stable germanetellones: syntheses and crystal structures of the heaviest germanium–chalcogen double-bond compound. J. Am. Chem. Soc. 119, 2337–2338 (1997).

    Article  CAS  Google Scholar 

  45. Withnall, R. & Andrews, L. Matrix reactions of germane and oxygen atoms. Infrared spectroscopic evidence for germylene–water complex, germanone, germanol, hydroxygermylene, and germanic acid. J. Phys. Chem. 94, 2351–2357 (1990).

    Article  CAS  Google Scholar 

  46. Trinquier, G., Pelissier, M., Saint-Roch, B. & Lavayssiere, H. Structure of germanone and germathione through ab initio calculations. J. Organomet. Chem. 214, 169–181 (1981).

    Article  CAS  Google Scholar 

  47. Trinquier, G., Barthelat, J.-C. & Satgé, J. Double bonds vs. carbene-like unsaturations in germanium intermediates. J. Am. Chem. Soc. 104, 5931–5936 (1982).

    Article  CAS  Google Scholar 

  48. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Education, Culture, Sports, Science and Technology of Japan for the Grant-in-Aid for Specially Promoted Research (No. 19002008). The numerical calculations were performed, in part, at the Research Center for Computational Science, Okazaki, Japan. We thank Y. Hongo, T. Nakamura and S. Kamiguchi (RIKEN) for their help with the mass spectrometry and Raman spectroscopy. We thank the RIKEN materials characterization team for the elemental analyses of the samples synthesized in this study. We also thank N. Tokitoh and M. Driess for their valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

L.L. and T.F. performed all the experiments. T.M. co-directed the project and designed the experiments. D.H. carried out the X-ray crystallographic analysis. H.F. and K. Tanaka performed the computational studies. K. Tamao directed the project. L.L., T.M. and K. Tamao co-wrote the paper. All authors contributed to discussions.

Corresponding authors

Correspondence to Tsukasa Matsuo or Kohei Tamao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1529 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 37 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 36 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 36 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 46 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 36 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 44 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 47 kb)

Supplementary information

Crystallographic data for compound 8 (CIF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Fukawa, T., Matsuo, T. et al. A stable germanone as the first isolated heavy ketone with a terminal oxygen atom. Nature Chem 4, 361–365 (2012). https://doi.org/10.1038/nchem.1305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing