Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor

Abstract

Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid–inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence of human and rat amylin and structural model of human amylin fibrils.
Figure 2: Rat amylin prevents human amylin from forming N-terminal, and not C-terminal, β-sheets at 8 h after mixing.
Figure 3: Human amylin β-sheets, initially disrupted by rat amylin, eventually form and promote the formation of rat amylin β-sheets.
Figure 4: Electron microscopy supports the unexpected structural dynamics revealed by 2D IR results.
Figure 5: Molecular dynamics simulation suggests that the N-terminals of human and rat amylin can form a partially ordered β-sheet complex.

Similar content being viewed by others

References

  1. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  Google Scholar 

  2. Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. Pancreatic islet cell toxicity of amylin associated with type 2 diabetes mellitus. Nature 368, 756–760 (1994).

    Article  CAS  Google Scholar 

  3. Dawson, T. M. & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819–822 (2003).

    Article  CAS  Google Scholar 

  4. McLaurin, J. et al. Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nature. Med. 12, 801–808 (2006).

    Article  CAS  Google Scholar 

  5. Roberts, B. E. & Shorter, J. Escaping amyloid fate. Nature. Struct. Mol. Biol. 15, 544–546 (2008).

    Article  CAS  Google Scholar 

  6. Soto, C. et al. β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nature. Med. 4, 822–826 (1998).

    Article  CAS  Google Scholar 

  7. Gordon, D., Tappe, R. & Meredith, S. Design and characterization of a membrane permeable N-methyl amino acid-containing peptide that inhibits Aβ1–40 fibrillogenesis. J. Pep. Res. 60, 37–55 (2002).

    Article  CAS  Google Scholar 

  8. Kapurniotu, A., Schmauder, A. & Tenidis, K. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. J. Mol. Biol. 315, 339–350 (2002).

    Article  CAS  Google Scholar 

  9. Gilead, S. & Gazit, E. Inhibition of amyloid fibril formation by peptide analogues modified with α-aminoisobutyric acid. Angew. Chem. Int. Ed. 43, 4041–4044 (2004).

    Article  CAS  Google Scholar 

  10. Yan, L-M., Tatarek-Nossol, M., Velkova, A., Kazantzis, A. & Kapurniotu, A. Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis. Proc. Natl Acad. Sci. USA 103, 2046–2051 (2006).

    Article  CAS  Google Scholar 

  11. Meng, F., Raleigh, D. P. & Abedini, A. Combination of kinetically selected inhibitors in trans leads to highly effective inhibition of amyloid formation. J. Am. Chem. Soc. 132, 14340–14342 (2010).

    Article  CAS  Google Scholar 

  12. Cao, P., Meng, F., Abedini, A. & Raleigh, D. P. The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors. Biochemistry 49, 872–881 (2010).

    Article  CAS  Google Scholar 

  13. Zheng, J. et al. Macrocyclic β-sheet peptides that inhibit the aggregation of a Tau-protein-derived hexapeptide. J. Am. Chem. Soc. 133, 3144–3157 (2011).

    Article  CAS  Google Scholar 

  14. Hollander, P. A. et al. Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with Type 2 diabetes. Diabetes Care 26, 784–790 (2003).

    Article  CAS  Google Scholar 

  15. Gazit, E. Mechanisms of amyloid fibril self-assembly and inhibition. FEBS J. 272, 5971–5978 (2005).

    Article  CAS  Google Scholar 

  16. Necula, M., Kayed, R., Milton, S. & Glabe, C. G. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J. Biol. Chem. 282, 10311–10324 (2007).

    Article  CAS  Google Scholar 

  17. Porat, Y., Abramowitz, A. & Gazit, E. Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem. Biol. Drug Des. 67, 27–37 (2006).

    Article  CAS  Google Scholar 

  18. Lamberto, G. R. et al. Structural and mechanistic basis behind the inhibitory interaction of PcTS on α-synuclein amyloid fibril formation. Proc. Natl Acad. Sci. USA 106, 21057–21062 (2009).

    Article  CAS  Google Scholar 

  19. Sato, T. et al. Inhibitors of amyloid toxicity based on β-sheet packing of Aβ40 and Aβ42. Biochemistry 45, 5503–5516 (2006).

    Article  CAS  Google Scholar 

  20. Wu, C. et al. The binding of thioflavin T and its neutral analog BTA-1 to protofibrils of the Alzheimer's disease Aβ16–22 peptide probed by molecular dynamics simulations. J. Mol. Biol. 384, 718–729 (2008).

    Article  CAS  Google Scholar 

  21. Sievers, S. A. et al. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475, 96–100 (2011).

    Article  CAS  Google Scholar 

  22. Luca, S., Yau, W. M., Leapman, R. & Tycko, R. Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46, 13505–13522 (2007).

    Article  CAS  Google Scholar 

  23. Wiltzius, J. J. W. et al. Atomic structure of the cross-β spine of islet amyloid polypeptide (amylin). Protein Sci. 17, 1467–1474 (2008).

    Article  CAS  Google Scholar 

  24. Goldsbury, C. S. et al. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119, 17–27 (1997).

    Article  CAS  Google Scholar 

  25. Strasfeld, D. B., Ling, Y. L., Gupta, R., Raleigh, D. P. & Zanni, M. T. Strategies for extracting structural information from 2D IR spectroscopy of amyloid: application to islet amyloid polypeptide. J. Phys. Chem. B 113, 15679–15691 (2009).

    Article  CAS  Google Scholar 

  26. Kim, Y. S., Liu, L., Axelsen, P. H. & Hochstrasser, R. M. 2D IR provides evidence for mobile water molecules in β-amyloid fibrils. Proc. Natl Acad. Sci. USA 106, 17751–17756 (2009).

    Article  CAS  Google Scholar 

  27. Shim, S-H. et al. Two-dimensional IR spectroscopy and isotope labeling defines the pathway of amyloid formation with residue-specific resolution. Proc. Natl Acad. Sci. USA 106, 6614–6619 (2009).

    Article  CAS  Google Scholar 

  28. Jaikaran, E. T. A. S. et al. Identification of a novel human islet amyloid polypeptide β-sheet domain and factors influencing fibrillogenesis. J. Mol. Biol. 308, 515–525 (2001).

    Article  CAS  Google Scholar 

  29. Wang, L. et al. 2DIR spectroscopy of human amylin fibrils reveals robust β-sheet structure. J. Am. Chem. Soc. 133, 16062–16071 (2011).

    Article  CAS  Google Scholar 

  30. Jayasinghe, S. A. & Langen, R. Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44, 12113–12119 (2005).

    Article  CAS  Google Scholar 

  31. Knight, J. D., Hebda, J. A. & Miranker, A. D. Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide. Biochemistry 45, 9496–9508 (2006).

    Article  CAS  Google Scholar 

  32. Ling, Y. L., Strasfeld, D. B., Shim, S-H., Raleigh, D. P. & Zanni, M. T. Two-dimensional infrared spectroscopy provides evidence of an intermediate in the membrane-catalyzed assembly of diabetic amyloid. J. Phys. Chem. B 113, 2498–2505 (2009).

    Article  CAS  Google Scholar 

  33. Reddy, A. S. et al. Solution structures of rat amylin peptide: simulation, theory, and experiment. Biophys. J. 98, 443–451 (2010).

    Article  CAS  Google Scholar 

  34. Falvo, C., Hayashi, T., Zhuang, W. & Mukamel, S. Coherent two dimensional infrared spectroscopy of a cyclic decapeptide antamanide. A simulation study of the amide-I and A bands. J. Phys. Chem. B 112, 12479–12490 (2008).

    Article  CAS  Google Scholar 

  35. Woys, A. M. et al. 2D IR line shapes probe ovispirin peptide conformation and depth in lipid bilayers. J. Am. Chem. Soc. 132, 2832–2838 (2010).

    Article  CAS  Google Scholar 

  36. Smith, A. W. et al. Melting of a β-hairpin peptide using isotope-edited 2D IR spectroscopy and simulations. J. Phys. Chem. B 114, 10913–10924 (2010).

    Article  CAS  Google Scholar 

  37. Poduslo, J. F., Curran, G. L., Kumar, A., Frangione, B. & Soto, C. β-sheet breaker peptide inhibitor of Alzheimer's amyloidogenesis with increased blood–brain barrier permeability and resistance to proteolytic degradation in plasma. J. Neurobiol. 39, 371–382 (1999).

    Article  CAS  Google Scholar 

  38. Takahashi, T. & Mihara, H. Peptide and protein mimetics inhibiting amyloid β-peptide aggregation. Acc. Chem. Res. 41, 1309–1318 (2008).

    Article  CAS  Google Scholar 

  39. Sellin, D., Yan, L-M., Kapurniotu, A. & Winter, R. Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin. Biophys. Chem. 150, 73–79 (2010).

    Article  CAS  Google Scholar 

  40. Abedini, A., Meng, F. & Raleigh, D. P. A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J. Am. Chem. Soc. 129, 11300–11301 (2007).

    Article  CAS  Google Scholar 

  41. Kim, Y. S., Liu, L., Axelsen, P. H. & Hochstrasser, R. M. Two-dimensional infrared spectra of isotopically diluted amyloid fibrils from Aβ40. Proc. Natl Acad. Sci. USA 105, 7720–7725 (2008).

    Article  CAS  Google Scholar 

  42. Bayro, M. J. et al. Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J. Am. Chem. Soc. 133, 13967–13974 (2011).

    Article  CAS  Google Scholar 

  43. Mukherjee, P., Kass, I., Arkin, I. & Zanni, M. T. Picosecond dynamics of a membrane protein revealed by 2D IR. Proc. Natl Acad. Sci. USA 103, 3528–3533 (2006).

    Article  CAS  Google Scholar 

  44. Fang, C., Senes, A., Cristian, L., DeGrado, W. F. & Hochstrasser, R. M. Amide vibrations are delocalized across the hydrophobic interface of a transmembrane helix dimer. Proc. Natl Acad. Sci. USA 103, 16740–16745 (2006).

    Article  CAS  Google Scholar 

  45. Manor, J. et al. Gating mechanism of the influenza A M2 channel revealed by 1D and 2D IR spectroscopies. Structure 17, 247–254 (2009).

    Article  CAS  Google Scholar 

  46. Ghosh, A., Qiu, J., DeGrado, W. F. & Hochstrasser, R. M. Tidal surge in the M2 proton channel, sensed by 2D IR spectroscopy. Proc. Natl Acad. Sci. USA 108, 6115–6120 (2011).

    Article  CAS  Google Scholar 

  47. Remorino, A., Korendovych, I. V., Wu, Y., DeGrado, W. F. & Hochstrasser, R. M. Residue-specific vibrational echoes yield 3D structures of a transmembrane helix dimer. Science 332, 1206–1209 (2011).

    Article  CAS  Google Scholar 

  48. Moran, S. D. et al. Two-dimensional IR spectroscopy and segmental 13C labeling reveals the domain structure of human γD-crystallin amyloid fibrils. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1117704109 (2012).

  49. Maekawa, H., De Poli, M., Toniolo, C. & Ge, N-H. Couplings between peptide linkages across a 310-helical hydrogen bond revealed by two-dimensional infrared spectroscopy. J. Am. Chem. Soc. 131, 2042–2043 (2009).

    Article  CAS  Google Scholar 

  50. Abedini, A. & Raleigh, D. P. Incorporation of pseudoproline derivatives allows the facile synthesis of human IAPP, a highly amyloidogenic and aggregation-prone polypeptide. Org. Lett. 7, 693–696 (2005).

    Article  CAS  Google Scholar 

  51. Marek, P., Woys, A. M., Sutton, K., Zanni, M. T. & Raleigh, D. P. Efficient microwave-assisted synthesis of human islet amyloid polypeptide designed to facilitate the specific incorporation of labeled amino acids. Org. Lett. 12, 4848–4851 (2010).

    Article  CAS  Google Scholar 

  52. Marecek, J. et al. A simple and economical method for the production of 13C,18O-labeled Fmoc-amino acids with high levels of enrichment: applications to isotope-edited IR studies of proteins. Org. Lett. 9, 4935–4937 (2007).

    Article  CAS  Google Scholar 

  53. Middleton, C. T., Woys, A. M., Mukherjee, S. S. & Zanni, M. T. Residue-specific structural kinetics of proteins through the union of isotope labeling, mid-IR pulse shaping, and coherent 2D IR spectroscopy. Methods 52, 12–22 (2010).

    Article  CAS  Google Scholar 

  54. Shim, S-H., Strasfeld, D. B. & Zanni, M. T. Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses. Opt. Express 14, 13120–13130 (2006).

    Article  Google Scholar 

  55. Shim, S-H. & Zanni, M. T. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 11, 748–761 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research was provided by the National Institutes of Health (grants DK79895 to M.T.Z., GM078114 to D.P.R. and DK088184 to J.J.d.P.) and the National Science Foundation (CRC grant CHE 0832584 to M.T.Z and D.P.R.). The authors are grateful to R. Tycko for providing the coordinates for his structural model of human amylin fibrils.

Author information

Authors and Affiliations

Authors

Contributions

C.T.M., D.P.R. and M.T.Z. designed the research. C.T.M. performed the 2D IR and electron microscopy measurements. P.M., A.W.M. and P.C. synthesized and purified peptides. P.M and P.C performed the thioflavin-T fluorescence measurements. C.C., S.S. and J.J.d.P. designed and performed the molecular dynamics simulations. C.T.M. and M.T.Z. analysed data. C.T.M., D.P.R. and M.T.Z. wrote the manuscript and coordinated contributions by other authors.

Corresponding author

Correspondence to Martin T. Zanni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Middleton, C., Marek, P., Cao, P. et al. Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor. Nature Chem 4, 355–360 (2012). https://doi.org/10.1038/nchem.1293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing