Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gold-catalysed enantioselective Cope rearrangement of achiral 1,5-dienes

Abstract

Since the discovery of the Cope rearrangement in the 1940s, no asymmetric variant of the rearrangement of achiral 1,5-dienes has emerged, despite the successes that have been achieved with its heteroatom variants (Claisen, aza-Cope, and so on). This article reports the first example of an enantioselective Cope reaction that starts from an achiral diene. The new gold(I) catalyst derived from double Cl-abstraction of ((S)-3,5-xylyl-PHANEPHOS(AuCl)2), has been developed for the sigmatropic rearrangement of alkenyl-methylenecyclopropanes. The reaction proceeds at low temperature and the synthetically useful vinylcyclopropane products are obtained in high yield and enantioselectivity. Density functional theory calculations predict that: (1) the reaction proceeds via a cyclic carbenium ion intermediate, (2) the relief of strain in the methylenecyclopropane moiety provides the thermodynamic driving force for the rearrangement and (3) metal complexation of the transition-state structure lowers the rearrangement barriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transition-metal catalysed Cope rearrangements.
Figure 2: Computational investigation of the rearrangement pathway.

Similar content being viewed by others

References

  1. Cope, A. C. & Hardy, E. M. The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system. J. Am. Chem. Soc. 62, 441–444 (1940).

    CAS  Google Scholar 

  2. Nubbemeyer, U. Recent advances in asymmetric [3,3]-sigmatropic rearrangements. Synthesis 961–1008 (2003).

  3. Allin, S. M. & Baird, R. D. Development and synthetic applications of asymmetric [3,3]-sigmatropic rearrangements. Curr. Org. Chem. 5, 395–415 (2001).

    CAS  Google Scholar 

  4. Watson, M. P., Overman, L. E. & Bergman, R. G. Kinetic and computational analysis of the palladium(II)-catalyzed asymmetric allylic trichloroacetimidate rearrangement: development of a model for enantioselectivity. J. Am. Chem. Soc. 129, 5031–5044 (2007).

    CAS  PubMed  Google Scholar 

  5. Hansen, J. H. et al. On the mechanism and selectivity of the combined C–H activation/Cope rearrangement. J. Am. Chem. Soc. 133, 5076–5085 (2011).

    CAS  PubMed  Google Scholar 

  6. Lian, Y. & Davies, H. M. L. Combined C–H functionalization/Cope rearrangement with vinyl ethers as a surrogate for the vinylogous Mukaiyama aldol reaction. J. Am. Chem. Soc. 133, 11940–11943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoffmann, R. & Stohrer, W-D. Cope rearrangement revisited. J. Am. Chem. Soc. 93, 6941–6948 (1971).

    CAS  Google Scholar 

  8. Wendt, K. U., Schulz, G. E. & Corey, E. J. Enzyme mechanisms for polycyclic triterpene formation. Angew. Chem. Int. Ed. 39, 2812–2833 (2000).

    CAS  Google Scholar 

  9. Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rubin, M., Rubina, M. & Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 107, 3117–3179 (2007).

    CAS  PubMed  Google Scholar 

  11. Lu, B-L., Dai, L. & Shi, M. Strained small rings in gold-catalyzed rapid chemical transformations. Chem. Soc. Rev. doi: 10.1039/C2CS15295A (2012).

  12. Seiser, T. & Cramer, N. Enantioselective metal-catalyzed activation of strained rings. Org. Biomol. Chem. 7, 2835–2840 (2009).

    CAS  PubMed  Google Scholar 

  13. Leemans, E., D'hooghe, M. & De Kimpe, N. Ring expansion of cyclobutylmethylcarbenium ions to cyclopentane or cyclopentene derivatives and metal-promoted analogous rearrangements. Chem. Rev. 111, 3268–3333 (2011).

    CAS  PubMed  Google Scholar 

  14. Fürstner, A. & Aïssa, C. PtCl2-catalyzed rearrangement of methylenecyclopropanes. J. Am. Chem. Soc. 128, 6306–6307 (2006).

    PubMed  Google Scholar 

  15. Seiser, T., Saget, T., Tran, D. N. & Cramer, N. Cyclobutanes in catalysis. Angew. Chem. Int. Ed. 50, 7740–7752 (2011).

    CAS  Google Scholar 

  16. Mauleόn, P., Krinsky, J. L. & Toste, F. D. Mechanistic studies on Au(I)-catalyzed [3,3]-sigmatropic rearrangements using cyclopropane probes. J. Am. Chem. Soc. 131, 4513–4520 (2009).

    Google Scholar 

  17. Frisch, M. J. et al. GAUSSIAN09, Revision A. 02; Gaussian, Inc., Wallingford CT, 2009.

  18. Sokol, J. G., Korapala, C. S., White, P. S., Becker, J. J. & Gagné, M. R. Terminating platinum-initiated cation–olefin reactions with simple alkenes. Angew. Chem. Int. Ed. 50, 5658–5661 (2011).

    CAS  Google Scholar 

  19. Sethofer, S. G., Meyer, T. & Toste, F. D. Gold(I)-catalyzed enantioselective polycyclization reactions. J. Am. Chem. Soc. 132, 8276–8277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Pradal, A., Chao, C-M., Vitale, M. R., Toullec, P. Y. & Michelet, V. Asymmetric Au-catalyzed domino cyclization/nucleophile addition reactions of enynes in the presence of water, methanol and electron-rich aromatic derivatives. Tetrahedron 67, 4371–4377 (2011).

    CAS  Google Scholar 

  21. Mézailles, N., Ricard, L. & Gagosz, F. Phosphine gold(I) bis-(trifluoromethanesulfonyl)imidate complexes as new highly efficient and air-stable catalysts for the cycloisomerization of enynes. Org. Lett. 7, 4133–4136 (2005).

    PubMed  Google Scholar 

  22. Overman, L. E. & Renaldo, A. F. Mechanism of the palladium dichloride catalyzed Cope rearrangement of acyclic dienes. A substituent effect study. J. Am. Chem. Soc. 112, 3945–3949 (1990).

    CAS  Google Scholar 

  23. Nakamura, H., Iwama, H., Ito, M. & Yamamoto, Y. Palladium(0)-catalyzed Cope rearrangement of acyclic 1,5-dienes. Bis(π-allyl)palladium(II) intermediate. J. Am. Chem. Soc. 121, 10850–10851 (1999).

    CAS  Google Scholar 

  24. Fanning, K. N., Jamieson, A. G. & Sutherland, A. Palladium(II)-catalyzed rearrangement reactions. Curr. Org. Chem. 10, 1007–1020 (2006).

    CAS  Google Scholar 

  25. Siebert, M. R. & Tantillo, D. J. Transition-state complexation in palladium-promoted [3,3] sigmatropic shifts. J. Am. Chem. Soc. 129, 8686–8687 (2007).

    CAS  PubMed  Google Scholar 

  26. Nowicki, J. Claisen, Cope and related rearrangements in the synthesis of flavour and fragrance compounds. Molecules 5, 1033–1050 (2000).

    CAS  Google Scholar 

  27. Blechert, S. The hetero-Cope rearrangement in organic synthesis. Synthesis 71–82 (1989).

    Google Scholar 

  28. Koh, J. H., Mascarenhas, C. & Gagné, M. R. Pd(II)-catalyzed cyclogeneration of carbocations: subsequent rearrangement and trapping under oxidative conditions. Tetrahedron 60, 7405–7410 (2004).

    CAS  Google Scholar 

  29. Korotchenko, V. N. & Gagné, M. R. Palladium-catalyzed cyclization of 1,ω-dienols: multiple ways to intramolecularly trap a carbocation. J. Org. Chem. 72, 4877–4881 (2007).

    CAS  PubMed  Google Scholar 

  30. Fürstner, A. Gold and platinum catalysis – a convenient tool for generating molecular complexity. Chem. Soc. Rev. 38, 3208–3221 (2009).

    PubMed  Google Scholar 

  31. Li, Z., Brouwer, C. & He. C. Gold-catalyzed organic transformations. Chem. Rev. 108, 3239–3265 (2008).

    CAS  Google Scholar 

  32. Gorin, D. J., Sherry, B. D. & Toste, F. D. Ligand effects in homogeneous Au catalysis. Chem. Rev. 108, 3351–3378 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Widenhoefer, R. A. Recent developments in enantioselective gold(I) catalysis. Chem. Eur. J. 14, 5382–5391 (2008).

    CAS  PubMed  Google Scholar 

  34. Fürstner, A. & Davies, P. W. Catalytic carbophilic activation: catalysis by platinum and gold π acids. Angew. Chem. Int. Ed. 46, 3410–3449 (2007).

    Google Scholar 

  35. Hashmi, A. S. K. The catalysis gold rush: new claims. Angew. Chem. Int. Ed. 44, 6990–6993 (2005).

    CAS  Google Scholar 

  36. Kleinbeck, F. & Toste, F. D. Gold(I)-catalyzed enantioselective ring expansion of allenylcyclopropanols. J. Am. Chem. Soc. 131, 9178–9179 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007).

    CAS  PubMed  Google Scholar 

  38. Tarselli, M. A., Chianese, A. R., Lee, S. J. & Gagné, M. R. Gold(I)-catalyzed asymmetric cycloisomerization of eneallenes into vinylcyclohexenes. Angew. Chem. Int. Ed. 46, 6670–6673 (2007).

    CAS  Google Scholar 

  39. Stafford, J. A. & McMurry, J. E. An efficient method for the preparation of alkylidenecyclopropanes. Tetrahedron Lett. 29, 2531–2534 (1988).

    CAS  Google Scholar 

  40. Sethofer, S. G., Staben, S. T., Hung, O. T. & Toste, F. D. Au(I)-catalyzed ring expanding cycloisomerization: total synthesis of ventricosene. Org. Lett. 10, 4315–4318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    CAS  Google Scholar 

  42. Zhao, Y. & Truhlar, D. G. Density functionals with broad applicability in chemistry. Acc. Chem. Res. 41, 157–167 (2008).

    CAS  PubMed  Google Scholar 

  43. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    CAS  Google Scholar 

  44. Johnson, W. T. G. & Borden, W. T. Why are methylenecyclopropane and 1-methylcyclopropene more ‘strained’ than methylcyclopropane? J. Am. Chem. Soc. 119, 5930–5933 (1997).

    CAS  Google Scholar 

  45. Bach, R. D. & Dmitrenko, O. Strain energy of small ring hydrocarbons. Influence of C–H bond dissociation energies. J. Am. Chem. Soc. 126, 4444–4452 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The University of North Carolina group acknowledges the National Institute of General Medicine (GM-60578), D.W. acknowledges the Fulbright Foreign Student Program, D.J.T. acknowledges support from the ACS-PRF program (49119-ND4) and the National Science Foundation's Partnership for Advanced Computational Infrastructure (CHE-030089, Pittsburgh Supercomputer Center) and O.G. acknowledges R.M. Hussing, and M. and L. Defenbaugh for support.

Author information

Authors and Affiliations

Authors

Contributions

R.J.F., D.W. and M.R.G. conceived and designed the experiments. R.J.F. performed the experiments and analysed the data. R.J.F., D.J.T. and M.R.G. co-wrote the paper. O.G. and D.J.T. performed the DFT calculations. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dean J. Tantillo or Michel R. Gagné.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information (PDF 9983 kb)

Supplementary information

Crystallographic data for compound 4. (CIF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felix, R., Weber, D., Gutierrez, O. et al. A gold-catalysed enantioselective Cope rearrangement of achiral 1,5-dienes. Nature Chem 4, 405–409 (2012). https://doi.org/10.1038/nchem.1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing