Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II

Subjects

Abstract

Across chemical disciplines, an interest in developing artificial water splitting to O2 and H2, driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that ‘two orders of magnitude’ gap with a rationally designed molecular catalyst [Ru(bda)(isoq)2] (H2bda = 2,2′-bipyridine-6,6′-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s−1. This value is, for the first time, moderately comparable with the reaction rate of 100–400 s−1 of the oxygen-evolving complex of photosystem II in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalytic performances of complexes 1 and 2 .
Figure 2: Kinetic and spectral data for complex 2 .
Figure 3
Figure 4: Calculated encounter complex EC(isoq) ([O1 · · · O2] = 3.22 Å).
Figure 5: Calculated potential energy profile of O–O bond formation combined with the reactions steps of the liberation of O2 from the RuIV-peroxo dimer.
Figure 6: Calculated transition state (TSoo(isoq); [O1−O2] = 2.038 Å) according to the potential energy scan from Fig. 5.

Similar content being viewed by others

References

  1. Alstrum-Acevedo, J. H., Brennaman, M. K. & Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005).

    Article  CAS  Google Scholar 

  2. Sun, L., Hammarström, L., Åkermark, B. & Styring, S. Towards artificial photosynthesis: ruthenium–manganese chemistry for energy production. Chem. Soc. Rev. 30, 36–49 (2001).

    Article  CAS  Google Scholar 

  3. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  CAS  Google Scholar 

  4. Sala, X., Romero, I., Rodríguez, M., Escriche, L. & Llobet, A. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed. 48, 2842–2852 (2009).

    Article  CAS  Google Scholar 

  5. Umena, Y., Kawakami, K., Shen, J-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  CAS  Google Scholar 

  6. Dismukes, G. C. et al. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42, 1935–1943 (2009).

    Article  CAS  Google Scholar 

  7. Romain, S., Vigara, L. & Llobet, A. Oxygen–oxygen bond formation pathways promoted by ruthenium complexes. Acc. Chem. Res. 42, 1944–1953 (2009).

    Article  CAS  Google Scholar 

  8. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  CAS  Google Scholar 

  9. Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22, 163–170 (1989).

    Article  CAS  Google Scholar 

  10. McDaniel, N. D., Coughlin, F. J., Tinker, L. L. & Bernhard, S. Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc. 130, 210–217 (2008).

    Article  CAS  Google Scholar 

  11. Hull, J. F. et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc. 131, 8730–8731 (2009).

    Article  CAS  Google Scholar 

  12. Lalrempuia, R., McDaniel, N. D., Müller-Bunz, H., Bernhard, S. & Albrecht, M. Water oxidation catalyzed by strong carbene-type donor–ligand complexes of iridium. Angew. Chem. Int. Ed. 49, 9765–9768 (2010).

    Article  CAS  Google Scholar 

  13. Mullins, C. S. & Pecoraro, V. L. Reflections on small molecule manganese models that seek to mimic photosynthetic water oxidation chemistry. Coord. Chem. Rev. 252, 416–443 (2008).

    Article  CAS  Google Scholar 

  14. Wasylenko, D. J., Ganesamoorthy, C., Borau-Garcia, J. & Berlinguette, C. P. Electrochemical evidence for catalytic water oxidation mediated by a high-valent cobalt complex. Chem. Commun. 47, 4249–4251 (2011).

    Article  CAS  Google Scholar 

  15. Dogutan, D. K., McGuire, R. & Nocera, D. G. Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. J. Am. Chem. Soc. 133, 9178–9180 (2011).

    Article  CAS  Google Scholar 

  16. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  17. Ellis, W. C., McDaniel, N. D., Bernhard, S. & Collins, T. J. Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    Article  CAS  Google Scholar 

  18. Fillol, J. L. et al. Efficient water oxidation catalysts based on readily available iron coordination complexes. Nature Chem. 3, 807–813 (2011).

    Article  CAS  Google Scholar 

  19. Gersten, S. W., Samuels, G. J. & Meyer, T. J. Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc. 104, 4029–4030 (1982).

    Article  CAS  Google Scholar 

  20. Duan, L., Fischer, A., Xu, Y. & Sun, L. Isolated seven-coordinate Ru(IV) dimer complex with [HOHOH] bridging ligand as an intermediate for catalytic water oxidation. J. Am. Chem. Soc. 131, 10397–10399 (2009).

    Article  CAS  Google Scholar 

  21. Nyhlén, J., Duan, L., Åkermark, B., Sun, L. & Privalov, T. Evolution of O2 in a seven-coordinate RuIV dimer complex with a [HOHOH]−1 bridge: a computational study. Angew. Chem. Int. Ed. 49, 1773–1777 (2010).

    Article  Google Scholar 

  22. Xu, Y. et al. Chemical and light-driven oxidation of water catalyzed by an efficient dinuclear ruthenium complex. Angew. Chem. Int. Ed. 49, 8934–8937 (2010).

    Article  CAS  Google Scholar 

  23. Bozoglian, F. et al. The Ru-Hbpp water oxidation catalyst. J. Am. Chem. Soc. 131, 15176–15187 (2009).

    Article  CAS  Google Scholar 

  24. Cooper, V. R. et al. Stacking interactions and the twist of DNA. J. Am. Chem. Soc. 130, 1304–1308 (2007).

    Article  Google Scholar 

  25. Sarkhel, S., Rich, A. & Egli, M. Water-nucleobase ‘stacking’: H–π and lone pair–π interactions in the atomic resolution crystal structure of an RNA pseudoknot. J. Am. Chem. Soc. 125, 8998–8999 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Research Council, K & A Wallenberg Foundation, the Swedish Energy Agency, the China Scholarship Council (CSC), the China Natural Science Foundation (21120102036), the National Basic Research Program of China (2009CB220009), MICINN (CTQ2010-21497 and Consolider Ingenio 2010 CSD2006-0003) Spain and the WCU Program (R31-10010) Korea.

Author information

Authors and Affiliations

Authors

Contributions

L.S. and A.L. supervised the project. T.P. supervised the theoretical part of the project. L.D. synthesized all the complexes and carried out the characterization, catalysis and electrochemistry. S.M. carried out the electrochemistry and mass measurements. F.B. performed stopped-flow UV–vis measurements. B.S. and T.P. performed DFT calculations. L.S., A.L., L.D. and T.P. wrote the paper.

Corresponding authors

Correspondence to Timofei Privalov, Antoni Llobet or Licheng Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, L., Bozoglian, F., Mandal, S. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chem 4, 418–423 (2012). https://doi.org/10.1038/nchem.1301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1301

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing