Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elucidation of the timescales and origins of quantum electronic coherence in LHCII

Abstract

Photosynthetic organisms harvest sunlight with near unity quantum efficiency. The complexity of the electronic structure and energy transfer pathways within networks of photosynthetic pigment–protein complexes often obscures the mechanisms behind the efficient light-absorption-to-charge conversion process. Recent experiments, particularly using two-dimensional spectroscopy, have detected long-lived quantum coherence, which theory suggests may contribute to the effectiveness of photosynthetic energy transfer. Here, we present a new, direct method to access coherence signals: a coherence-specific polarization sequence, which isolates the excitonic coherence features from the population signals that usually dominate two-dimensional spectra. With this polarization sequence, we elucidate coherent dynamics and determine the overall measurable lifetime of excitonic coherence in the major light-harvesting complex of photosystem II. Coherence decays on two distinct timescales of 47 fs and ~800 fs. We present theoretical calculations to show that these two timescales are from weakly and moderately strongly coupled pigments, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Absolute-value non-rephasing spectra under coherence-specific polarization at 77 K.
Figure 2: Integrated, absolute-value relaxation spectra taken under coherence-specific polarization plotted versus waiting time.
Figure 3: Simulations of decay curves for coherence elements of the density matrix between pairs of excitons within monomeric LHCII.

Similar content being viewed by others

References

  1. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

    Book  Google Scholar 

  2. Dekker, J. P. & Boekema, E. J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta Bioenerg. 1706, 12–39 (2005).

    Article  CAS  Google Scholar 

  3. Andrews, D. L., Curutchet, C. & Scholes, G. D. Resonance energy transfer: beyond the limits. Laser Photon. Rev. 5, 114–123 (2011).

    Article  CAS  Google Scholar 

  4. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    Article  CAS  Google Scholar 

  5. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  CAS  Google Scholar 

  6. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  7. Ishizaki, A. & Fleming, G. R. Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature. Proc. Natl Acad. Sci. USA 106, 17255–17260 (2009).

    Article  Google Scholar 

  8. Mohseni, M., Rebentrost, P., Lloyd, S. & Aspuru-Guzik, A. Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008).

    Article  Google Scholar 

  9. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  Google Scholar 

  10. Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    Article  CAS  Google Scholar 

  11. Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K. & Zaks, J. Design principles of photosynthetic light-harvesting. Faraday Discuss. 155, 27–41 (2012).

    Article  CAS  Google Scholar 

  12. Cheng, Y. C. & Fleming, G. R. Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112, 4254–4260 (2008).

    Article  CAS  Google Scholar 

  13. Lee, H., Cheng, Y. C. & Fleming, G. R. Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316, 1462–1465 (2007).

    Article  CAS  Google Scholar 

  14. Mercer, I. P. et al. Instantaneous mapping of coherently coupled electronic transitions and energy transfers in a photosynthetic complex using angle-resolved coherent optical wave-mixing. Phys. Rev. Lett. 102, 57402 (2009).

    Article  Google Scholar 

  15. Calhoun, T. R. et al. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113, 16291–16295 (2009).

    Article  CAS  Google Scholar 

  16. Zanni, M. T., Ge, N. H., Kim, Y. S. & Hochstrasser, R. M. Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination. Proc. Natl Acad. Sci. USA 98, 11265–11270 (2001).

    Article  CAS  Google Scholar 

  17. Hochstrasser, R. M. Two-dimensional IR-spectroscopy: polarization anisotropy effects. Chem. Phys. 266, 273–284 (2001).

    Article  CAS  Google Scholar 

  18. Dreyer, J., Moran, A. M. & Mukamel, S. Tensor components in three pulse vibrational echoes of a rigid dipeptide. Bull. Korean Chem. Soc. 24, 1091–1096 (2003).

    Article  CAS  Google Scholar 

  19. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  CAS  Google Scholar 

  20. Ginsberg, N. S., Cheng, Y. C. & Fleming, G. R. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42, 1352–1363 (2009).

    Article  CAS  Google Scholar 

  21. Schlau-Cohen, G. S., Ishizaki, A. & Fleming, G. R. Two-dimensional electronic spectroscopy and photosynthesis: fundamentals and applications to photosynthetic light-harvesting. Chem. Phys. 386, 1–22 (2011).

    Article  CAS  Google Scholar 

  22. Schlau-Cohen, G. S., Dawlaty, J. M. & Fleming, G. R. Ultrafast multidimensional spectroscopy: principles and applications to photosynthetic systems. IEEE J. Sel. Top. Quantum Electron. 18, 283–295 (2012).

    Article  CAS  Google Scholar 

  23. Read, E. L. et al. Cross-peak-specific two-dimensional electronic spectroscopy. Proc. Natl Acad. Sci. USA 104, 14203–14208 (2007).

    Article  CAS  Google Scholar 

  24. Schlau-Cohen, G. S. et al. Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII. Proc. Natl Acad. Sci. USA 107, 13276–13281 (2010).

    Article  CAS  Google Scholar 

  25. Ginsberg, N. S. et al. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy. Proc. Natl Acad. Sci. USA 108, 3848–3853 (2011).

    Article  CAS  Google Scholar 

  26. Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  27. van Grondelle, R. & Novoderezhkin, V. I. Energy transfer in photosynthesis: experimental insights and quantitative models. Phys. Chem. Chem. Phys. 8, 793–807 (2006).

    Article  CAS  Google Scholar 

  28. Schlau-Cohen, G. S. et al. Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy. J. Phys. Chem. B 113, 15352–15363 (2009).

    Article  CAS  Google Scholar 

  29. Liu, Z. F. et al. Crystal structure of spinach major light-harvesting complex at 2.72 ångstrom resolution. Nature 428, 287–292 (2004).

    Article  CAS  Google Scholar 

  30. Standfuss, R., van Scheltinga, A. C. T., Lamborghini, M. & Kuhlbrandt, W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 24, 919–928 (2005).

    Article  CAS  Google Scholar 

  31. Read, E. L. et al. Visualization of excitonic structure in the Fenna–Matthews–Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy. Biophys. J. 95, 847–856 (2008).

    Article  CAS  Google Scholar 

  32. Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magentic Resonance in One and Two Dimensions (ed. Rowlinson, J. S.) (Oxford Science Publications, 1987).

    Google Scholar 

  33. Barzda, V. et al. Singlet–singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys. J. 80, 2409–2421 (2001).

    Article  CAS  Google Scholar 

  34. Bittner, T., Irrgang, K. D., Renger, G. & Wasielewski, M. R. Ultrafast excitation-energy transfer and exciton–exciton annihilation processes in isolated light-harvesting complexes of Photosystem-II (LHC-II) from spinach. J. Phys. Chem. 98, 11821–11826 (1994).

    Article  CAS  Google Scholar 

  35. Ishizaki, A. & Fleming, G. R. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130, 234111 (2009).

    Article  Google Scholar 

  36. Frahmcke, J. S. & Walla, P. J. Coulombic couplings between pigments in the major light-harvesting complex LHC II calculated by the transition density cube method. Chem. Phys. Lett. 430, 397–403 (2006).

    Article  Google Scholar 

  37. Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    Article  CAS  Google Scholar 

  38. Ishizaki, A. & Fleming, G. R. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130, 234110 (2009).

    Article  Google Scholar 

  39. Ishizaki, A. & Fleming, G. R. Quantum superpositions in photosynthetic light harvesting: delocalization and entanglement. New J. Phys. 12, 055004 (2010).

    Article  Google Scholar 

  40. Engh, R. A., Petrich, J. W. & Fleming, G. R. Removal of coherent coupling artifact in ground-state recovery experiments—malachite green in water–methanol mixtures. J. Phys. Chem. 89, 618–621 (1985).

    Article  CAS  Google Scholar 

  41. Joo, T. H., Jia, Y. W., Yu, J. Y., Lang, M. J. & Fleming, G. R. Third-order nonlinear time domain probes of solvation dynamics. J. Chem. Phys. 104, 6089–6108 (1996).

    Article  CAS  Google Scholar 

  42. Ishizaki, A. & Fleming, G. R. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. J. Phys. Chem. B 115, 6227–6233 (2011).

    Article  CAS  Google Scholar 

  43. Ohtsuki, Y. & Fujimura, Y. Bath-induced vibronic coherence transfer effects on femtosecond time-resolved resonant light-scattering spectra from molecules. J. Chem. Phys. 91, 3903–3915 (1989).

    Article  CAS  Google Scholar 

  44. Jean, J. M. & Fleming, G. R. Competition between energy and phase relaxation in electronic curve crossing processes. J. Chem. Phys. 103, 2092–2101 (1995).

    Article  CAS  Google Scholar 

  45. Khalil, M., Demirdoven, N. & Tokmakoff, A. Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy. J. Chem. Phys. 121, 362–373 (2004).

    Article  CAS  Google Scholar 

  46. Nee, M. J., Baiz, C. R., Anna, J. M., McCanne, R. & Kubarych, K. J. Multilevel vibrational coherence transfer and wavepacket dynamics probed with multidimensional IR spectroscopy. J. Chem. Phys. 129, 084503 (2008).

    Article  Google Scholar 

  47. Olbrich, C., Strumpfer, J., Schulten, K. & Kleinekathofer, U. Theory and simulation of the environmental effects on FMO electronic transitions. J. Phys. Chem. Lett. 2, 1771–1776 (2011).

    Article  CAS  Google Scholar 

  48. Caffarri, S., Croce, R., Breton, J. & Bassi, R. The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting. J. Biol. Chem. 276, 35924–35933 (2001).

    Article  CAS  Google Scholar 

  49. Brixner, T., Stiopkin, I. V. & Fleming, G. R. Tunable two-dimensional femtosecond spectroscopy. Opt. Lett. 29, 884–886 (2004).

    Article  CAS  Google Scholar 

  50. Brixner, T., Manĉal, T., Stiopkin, I. V. & Fleming, G. R. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004).

    Article  CAS  Google Scholar 

  51. Joo, T., Jia, Y. W. & Fleming, G. R. Ti-sapphire regenerative amplifier for ultrashort high-power multikilohertz pulses without an external stretcher. Opt. Lett. 20, 389–391 (1995).

    Article  CAS  Google Scholar 

  52. Cowan, M. L., Ogilvie, J. P. & Miller, R. J. D. Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386, 184–189 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract DE-AC02-05CH11231) and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (grant DE-AC03-76SF000098) (at LBNL and University of California, Berkeley). R.B. and M.B. acknowledge EU project PITN-GA-2009-238017 HARVEST and EU project 245070 FP7-KBBE-2009-3SUNBIOPATH. G.S.S.-C. thanks the A.A.U.W. American Fellowship and N.S.G. thanks the LBNL Glenn T. Seaborg postdoctoral fellowship for support.

Author information

Authors and Affiliations

Authors

Contributions

G.S.S.-C. and G.R.F. conceived and designed the experiments. G.S.S.-C., T.R.C. and N.S.G. performed the experiments. G.S.S.-C. and A.I. analysed the data. A.I. performed theoretical calculations. M.B. and R.B. grew and purified the sample. G.S.S.-C. and A.I. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Graham R. Fleming.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlau-Cohen, G., Ishizaki, A., Calhoun, T. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nature Chem 4, 389–395 (2012). https://doi.org/10.1038/nchem.1303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing