Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides

Abstract

The development of efficient and selective transformations is crucial in synthetic chemistry as it opens new possibilities in the total synthesis of complex molecules. Applying such reactions to the synthesis of ketones is of great importance, as this motif serves as a synthetic handle for the elaboration of numerous organic functionalities. In this context, we report a general and chemoselective method based on an activation/addition sequence on secondary amides allowing the controlled isolation of structurally diverse ketones and ketimines. The generation of a highly electrophilic imidoyl triflate intermediate was found to be pivotal in the observed exceptional functional group tolerance, allowing the facile addition of readily available Grignard and diorganozinc reagents to amides, and avoiding commonly observed over-addition or reduction side reactions. The methodology has been applied to the formal synthesis of analogues of the antineoplastic agent Bexarotene and to the rapid and efficient synthesis of unsymmetrical diketones in a one-pot procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for the conversion of carboxylic acid derivatives to ketones.
Figure 2: Applications of the chemoselective secondary amides transformation to ketones.

Similar content being viewed by others

References

  1. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Chau, M., Jennewein, S., Walker, K. & Croteau, R. Taxol biosynthesis: molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase. Chem. Biol. 11, 663–672 (2004).

    CAS  PubMed  Google Scholar 

  3. Hubbard, B. K. & Walsh, C. T. Vancomycin assembly: nature's way. Angew. Chem. Int. Ed. 42, 730–765 (2003).

    Article  CAS  Google Scholar 

  4. Schwecke, T. et al. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl Acad. Sci. USA 92, 7839–7843 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Trost, B. M. Selectivity: a key to synthetic efficiency. Science 219, 245–250 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

  7. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nature Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  8. Trost, B. M. & Dong, G. B. Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature 456, 485–488 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Afagh, N. A. & Yudin, A. K. Chemoselectivity and the curious reactivity preferences of functional groups. Angew. Chem. Int. Ed. 49, 262–310 (2010).

    Article  CAS  Google Scholar 

  10. Huckins, J. R., de Vicente, J. & Rychnovsky, S. D. Synthesis of the C1–C52 fragment of amphidinol 3, featuring a β-alkoxy alkyllithium addition reaction. Org. Lett. 9, 4757–4760 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen, C.-y. et al. Catalytic, enantioselective synthesis of taranabant, a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. Org. Proc. Res. Dev. 11, 616–623 (2007).

    Article  CAS  Google Scholar 

  12. Olah, G. A. Friedel–Crafts and Related Reactions Vol. 1, Ch. 11 (Interscience, 1963–1965).

  13. Milstein, D. & Stille, J. K. Mild, selective, general method of ketone synthesis from acyl chlorides and organotin compounds catalyzed by palladium. J. Org. Chem. 44, 1613–1618 (1979).

    Article  CAS  Google Scholar 

  14. Brunet, J.-J. & Chauvin, R. Synthesis of diarylketones through carbonylative coupling. Chem. Soc. Rev. 24, 89–95 (1995).

    Article  CAS  Google Scholar 

  15. Dieter, R. K. Reaction of acyl chlorides with organometallic reagents: a banquet table of metals for ketone synthesis. Tetrahedron 55, 4177–4236 (1999).

    Article  CAS  Google Scholar 

  16. Katritzky, A. R., Le, K. N. B., Khelashvili, L. & Mohapatra, P. P. Alkyl, unsaturated, (hetero)aryl, and N-protected α-amino ketones by acylation of organometallic reagents. J. Org. Chem. 71, 9861–9864 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Nahm, S. & Weinreb, S. M. N-Methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 22, 3815–3818 (1981).

    Article  CAS  Google Scholar 

  18. Sibi, M. P. Chemistry of N-methoxy-N-methylamides. Applications in synthesis. A review. Org. Prep. Proced. Int. 25, 15–40 (1993).

    Article  CAS  Google Scholar 

  19. Balasubramaniam, S. & Aiden, I. S. The growing synthetic utility of the Weinreb amide. Synthesis, 3707–3738 (2008).

  20. Sengupta, S., Mondal, S. & Das, D. Amino acid derived morpholine amides for nucleophilic α-amino acylation reactions: a new synthetic route to enantiopure α-amino ketones. Tetrahedron Lett. 40, 4107–4110 (1999).

    Article  CAS  Google Scholar 

  21. Comins, D. L. & Brown, J. D. Directed lithiation of tertiary β-amino benzamides. J. Org. Chem. 51, 3566–3572 (1986).

    Article  CAS  Google Scholar 

  22. Murphy, J. A. et al. Direct conversion of N-methoxy-N-methylamides (Weinreb amides) to ketones via a nonclassical Wittig reaction. Org. Lett. 7, 1427–1429 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Calosso, M. et al. Enantioselective synthesis of 2,3-disubstituted piperidines. Lett. Org. Chem. 4, 4–6 (2007).

    Article  CAS  Google Scholar 

  24. Comins, D. L. The synthetic utility of α-amino alkoxides. Synlett 615–625 (1992).

    Article  Google Scholar 

  25. Wuts, P. G. M. & Greene, T. W. Greene's Protective Groups in Organic Synthesis Ch. 4, Ch. 7 (Wiley, 2007).

    Google Scholar 

  26. Steinig, A. G. & Spero, D. M. Amines via nucleophilic 1,2-addition to ketimines. Construction of nitrogen-substituted quaternary carbon atoms. A review. Org. Prep. Proced. Int. 32, 205–234 (2000).

    Article  CAS  Google Scholar 

  27. Reingruber, R. & Bräse, S. 1,2-Addition of trialkylaluminium reagents to N-diphenylphosphinoyl-ketimines in the absence of any additional reagents. Chem. Commun. 105–107 (2008).

  28. Chen, Q., Ilies, L. & Nakamura, E. Cobalt-catalyzed ortho-alkylation of secondary benzamide with alkyl chloride through directed C–H bond activation. J. Am. Chem. Soc. 133, 428–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Yoo, E. J., Ma, S., Mei, T.-S., Chan, K. S. L. & Yu, J. Q. Pd-catalyzed intermolecular C–H amination with alkylamines. J. Am. Chem. Soc. 133, 7652–7655 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Marcoux, D. & Charette, A. B. Trans-directing ability of amide groups in cyclopropanation: application to the asymmetric cyclopropanation of alkenes with diazo reagents bearing two carboxy groups. Angew. Chem. Int. Ed. 47, 10155–10158 (2008).

    Article  CAS  Google Scholar 

  31. Barbe, G. & Charette, A. B. Highly chemoselective metal-free reduction of tertiary amides. J. Am. Chem. Soc. 130, 18–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Pelletier, G., Bechara, W. S. & Charette, A. B. Controlled and chemoselective reduction of secondary amides. J. Am. Chem. Soc. 132, 12817–12819 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Medley, J. W. & Movassaghi, M. Direct dehydrative N-pyridinylation of amides. J. Org. Chem. 74, 1341–1344 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Myers, A. G., Tom, N. J., Fraley, M. E., Cohen, S. B. & Madar, D. J. A convergent synthetic route to (+)-dynemicin A and analogs of wide structural variability. J. Am. Chem. Soc. 119, 6072–6094 (1997).

    Article  CAS  Google Scholar 

  35. Movassaghi, M. & Hill, M. D. Single-step synthesis of pyrimidine derivatives. J. Am. Chem. Soc. 128, 14254–14255 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Charette, A. B. & Grenon, M. Spectroscopic studies of the electrophilic activation of amides with triflic anhydride and pyridine. Can. J. Chem. 79, 1694–1703 (2001).

    Article  CAS  Google Scholar 

  37. Bartoli, J. et al. New azole antifungals. 2. Synthesis and antifungal activity of heterocyclecarboxamide derivatives of 3-amino-2-aryl-1-azolyl-2-butanol. J. Med. Chem. 41, 1855–1868 (1998).

    Article  Google Scholar 

  38. Jamieson, C., Miller, D. D., Rami, H. K. & Thompson, M. Preparation of piperidinecarboxamide and cyclohexanecarboxamide derivatives as vanilloid receptor modulators. International patent WO2005016915 (24 February 2005).

  39. Krasovskiy, A. & Knochel, P. A LiCl-mediated Br/Mg exchange reaction for the preparation of functionalized aryl- and heteroarylmagnesium compounds from organic bromides. Angew. Chem. Int. Ed. 43, 3333–3336 (2004).

    Article  CAS  Google Scholar 

  40. Small, B. L., Brookhart, M. & Bennett, A. M. A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 120, 4049–4050 (1998).

    Article  CAS  Google Scholar 

  41. Charette, A. B. Chiral Amine Synthesis: Methods, Developments and Applications Ch. 1 (Wiley, 2010).

    Google Scholar 

  42. Faul, M. M., Ratz, A. M., Sullivan, K. A., Trankle, W. G. & Winneroski, L. L. Synthesis of novel retinoid X receptor-selective retinoids. J. Org. Chem. 66, 5772–5782 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Canan Koch, S. S. et al. Synthesis of retinoid X recetor-specific ligands that are potent inducers of adipogenesis in 3T4-LI cells. J. Med. Chem. 42, 742–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Hudlicky, T. & Price, J. D. Anionic approaches to the construction of cyclopentanoids. Chem. Rev. 89, 1467–1486 (1989).

    Article  CAS  Google Scholar 

  45. Özkay, Y., Işikdağ, I., İncesu, Z. & Akalin, G. Synthesis of 2-substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl) phenyl]acetamide derivatives and evaluation of their anticancer activity. Eur. J. Med. Chem. 45, 3320–3328 (2010).

    Article  PubMed  CAS  Google Scholar 

  46. Prasad, K. R. & Penchalaiah, K. Total synthesis of (–)-anamarine. J. Org. Chem. 76, 6889–6893 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Sibi, M. P., Sharma, R. & Paulson, K. L. N,N′-Dimethoxy-N,N′-dimethylethanediamide: a useful α-oxo-N-methoxy-N-methylamide and 1,2-diketone synthon. Tetrahedron Lett. 33, 1941–1944 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC), the Canada Research Chair Program, the Canada Foundation for Innovation, the FQRNT Centre in Green Chemistry and Catalysis (CGCC) and the Université de Montréal. W.S.B. and G.P. are grateful to NSERC, FQRNT and the Université de Montréal for postgraduate scholarships. The authors would like to thank A. Lemire and P. Lavallée (Université de Montréal), P. Lapointe (IRIC) and M. Grenon (Lundbeck) for supplying starting materials and reagents.

Author information

Authors and Affiliations

Authors

Contributions

W.S.B. and G.P. carried out the experimental work, organized the research, analysed data and wrote the manuscript. All the authors contributed to the design of the experiments and editing of the manuscript.

Corresponding author

Correspondence to André B. Charette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechara, W., Pelletier, G. & Charette, A. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. Nature Chem 4, 228–234 (2012). https://doi.org/10.1038/nchem.1268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing