Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography

Abstract

Porous materials such as zeolites contain well-defined pores in molecular dimensions and have important industrial applications in catalysis, sorption and separation. Aluminosilicates with intersecting 10- and 12-ring channels are particularly interesting as selective catalysts. Many porous materials, especially zeolites, form only nanosized powders and some are intergrowths of different structures, making structure determination very challenging. Here, we report the atomic structures of an aluminosilicate zeolite family, ITQ-39, solved from nanocrystals only a few unit cells in size by electron crystallography. ITQ-39 is an intergrowth of three different polymorphs, built from the same layer but with different stacking sequences. ITQ-39 contains stacking faults and twinning with nano-sized domains, being the most complex zeolite ever solved. The unique structure of ITQ-39, with a three-dimensional intersecting pairwise 12-ring and 10-ring pore system, makes it a promising catalyst for converting naphtha into diesel fuel, a process of emerging interest for the petrochemical industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reconstructed electron diffraction patterns and HRTEM images of ITQ-39.
Figure 2: Three-dimensional electron potential map and atomic structure model of the stacking disorder in ITQ-39.
Figure 3: Comparison of simulated and experimental powder X-ray diffraction patterns.
Figure 4: Three-dimensional channel system in ITQ-39A with its structure model superimposed.
Figure 5: Channel system in ITQ-39A represented using a rod model.
Figure 6: Comparison of the catalytic results of ITQ-39, beta and MWW for alkylation of naphtha with olefins.

Similar content being viewed by others

References

  1. Lobo, R. F. et al. SSZ-26 and SSZ-33—2 molecular-sieves with intersecting 10-ring and 12-ring pores. Science 262, 1543–1546 (1993).

    Article  CAS  Google Scholar 

  2. Dorset, D. L., Weston, S. C. & Dhingra, S. S. Crystal structure of zeolite MCM-68: a new three-dimensional framework with large pores. J. Phys. Chem. B 110, 2045–2050 (2006).

    Article  CAS  Google Scholar 

  3. Simancas, R. et al. Modular organic structure-directing agents for the synthesis of zeolites. Science 330, 1219–1222 (2010).

    Article  CAS  Google Scholar 

  4. Leonowicz, M. E., Lawton, J. A., Lawton, S. L. & Rubin, M. K. MCM-22—a molecular-sieve with 2 independent multidimensional channel systems. Science 264, 1910–1913 (1994).

    Article  CAS  Google Scholar 

  5. Lobo, R. F. & Davis, M. E. CIT-1—a new molecular-sieve with intersecting pores bounded by 10-rings and 12-rings. J. Am. Chem. Soc. 117, 3764–3779 (1995).

    Article  Google Scholar 

  6. Corma, A., Rey, F., Valencia, S., Jorda, J. L. & Rius, J. A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Mater. 2, 493–497 (2003).

    Article  CAS  Google Scholar 

  7. Paillaud, J. L., Harbuzaru, B., Patarin, J. & Bats, N. Extra-large-pore zeolites with two-dimensional channels formed by 14 and 12 rings. Science 304, 990–992 (2004).

    Article  CAS  Google Scholar 

  8. Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolooulas, S. & Boulahya, K. ITQ-15: the first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun. 1356–1357 (2004).

  9. Corma, A., Diaz-Cabanas, M. J., Jorda, J. L., Martinez, C. & Moliner, M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443, 842–845 (2006).

    Article  CAS  Google Scholar 

  10. Treacy, M. M. J. & Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332, 249–251 (1988).

    Article  CAS  Google Scholar 

  11. Kokotailo, G. T., Lawton, S. L., Olson D. H. & Meier W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).

    Article  CAS  Google Scholar 

  12. Castaneda, R., Corma, A., Fornes, V., Rey, F. & Rius, J. Synthesis of a new zeolite structure ITQ-24, with intersecting 10- and 12-membered ring pores. J. Am. Chem. Soc. 125, 7820–7821 (2003).

    Article  CAS  Google Scholar 

  13. Cantin, A. et al. Synthesis and structure of the bidimensional zeolite ITQ-32 with small and large pores. J. Am. Chem. Soc. 127, 11560–11561 (2005).

    Article  CAS  Google Scholar 

  14. Moliner, M. et al. A new aluminosilicate molecular sieve with a system of pores between those of ZSM-5 and beta zeolite. J. Am. Chem. Soc. 133, 9497–9505 (2011).

    Article  CAS  Google Scholar 

  15. Baerlocher, Ch., Weber, T., McCusker, L. B., Palatinus, L. & Zones, S. T. Unraveling the perplexing structure of the zeolite SSZ-57. Science 333, 1334–1337 (2011).

    Article  Google Scholar 

  16. DeRosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    Article  CAS  Google Scholar 

  17. Henderson, R. & Unwin, P. N. T. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).

    Article  CAS  Google Scholar 

  18. Hovmöller, S., Sjögren, A., Farrants, G., Sundberg, M. & Marinder, B-O. Accurate atomic positions from electron microscopy. Nature 311, 238–241 (1984).

    Article  Google Scholar 

  19. Gramm, F. et al. Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature 444, 79–81 (2006).

    Article  CAS  Google Scholar 

  20. Baerlocher, Ch. et al. Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315, 1113–1116 (2007).

    Article  CAS  Google Scholar 

  21. Baerlocher, Ch. et al. Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Mater. 7, 631–635 (2008).

    Article  CAS  Google Scholar 

  22. Sun, J. L. et al. The ITQ-37 mesoporous chiral zeolite. Nature 458, 1154–1157 (2009).

    Article  CAS  Google Scholar 

  23. Jiang, J-X. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43, Science 333, 1331–1334 (2011).

    Google Scholar 

  24. Sun, J. L. et al. Structure determination of the zeolite IM-5 using electron crystallography. Z. Kristallogr. 225, 77–85 (2010).

    Article  CAS  Google Scholar 

  25. Zhang, D., Oleynikov, P., Hovmöller, S. & Zou, X. D. Collecting 3D electron diffraction data by the rotation method. Z. Kristallogr. 225, 94–102 (2010).

    Article  CAS  Google Scholar 

  26. Wan, W., Hovmöller, S. & Zou, X. D. Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy (revision submitted).

  27. Zou, X. D., Sundberg, M., Larine, M. & Hovmöller, S. Structure projection retrieval by image processing of HRTEM images taken under non-optimal defocus conditions. Ultramicroscopy 62, 103–121 (1996).

    Article  CAS  Google Scholar 

  28. Weirich, T. E., Ramlau, R., Simon, A., Hovmöller, S. & Zou, X. D. A crystal structure determined to 0.02 Å accuracy by electron microscopy. Nature 382, 144–146 (1996).

    Article  CAS  Google Scholar 

  29. Oleynikov, P., Hovmöller, S. & Zou, X. D. ED-Tomo; available at http://www.calidris-em.com.

  30. Zou, X. D., Hovmöller, S. & Oleynikov, P. Electron Crystallography: Electron Microscopy and Electron Diffraction, IUCr Texts on Crystallography (Oxford Univ. Press, 2011).

    Book  Google Scholar 

  31. Wan, W., Hovmöller, S. & Zou, X. D. QFocus; available at http://www.mmk.su.se/electron-crystallography.

  32. Hovmöller, S. CRISP: crystallographic image processing on a personal computer. Ultramicroscopy 41, 121–135 (1992).

    Article  Google Scholar 

  33. Oleynikov, P. eMap and eSlice: a software package for crystallographic computing. Cryst. Res. Technol. 46, 569–579 (2011).

    Article  CAS  Google Scholar 

  34. Baerlocher, Ch., Hepp, A. & Meier W. M. DLS-76. Distance Least Squares Refinement Program (Institut für Kristallographie, ETH Zurich, 1977).

    Google Scholar 

  35. Gale, J. D. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997).

    Article  CAS  Google Scholar 

  36. Gale, J. D. & Rohl, A. L. The general utility lattice program (GULP). Mol. Simul. 29, 291–341 (2003).

    Article  CAS  Google Scholar 

  37. Braunbarth, C. et al. Structure of strontium ion-exchanged ETS-4 microporous molecular sieves. Chem. Mater. 12, 1857–1865 (2000).

    Article  CAS  Google Scholar 

  38. Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).

    Article  Google Scholar 

  39. Baerlocher, Ch. & McCusker, L. B. Database of zeolite structures; available at http://www.iza-structure.org/databases/.

  40. Perego, C. & Ingallina, P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal. Today 73, 3–22 (2002).

    Article  CAS  Google Scholar 

  41. Collins, N. A., Landis, M. E., Timken, H. K. C. & Trewella, J. C. Cetane upgrading via aromatic alkylation. WO patent 00/39253 (2000).

  42. Corma, A., Corell, C. & Perez-Pariente, J. Synthesis and characterization of the MCM-22 zeolite. Zeolites 15, 2–8 (1995).

    Article  CAS  Google Scholar 

  43. Catlow, C. R. A. & Cormack, A. N. Computer modeling of silicates. Int. Rev. Phys. Chem. 6, 227–250 (1987).

    Article  CAS  Google Scholar 

  44. Schröder, K. P., Sauer, J., Leslie, M., Catlow, C. R. A. & Thomas, J. M. Bridging hydroxyl-groups in zeolitic catalysts—a computer-simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites). Chem. Phys. Lett. 188, 320–325 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Spanish MICINN, Consolider Ingenio 2010-Multicat, Generalitat Valenciana through the PROMETEO programme, the Swedish Research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Göran Gustafsson Foundation for Natural Scientific and Medical Research. M. Moliner also acknowledges support from the ‘Subprograma Ramon y Cajal’ (contract RYC-2011-08972). Wei Wan is supported by postdoctoral grants from the Carl-Trygger Foundation. The EM facility was supported by the Knut and Alice Wallenberg Foundation. Gunnel Karlsson is thanked for TEM sample preparation using ultramicrotomy.

Author information

Authors and Affiliations

Authors

Contributions

T.W., W.W., P.O and D.L.Z. carried out the TEM work. T.W and J.L.S. executed the structure solution and verification. M.M., J.G. and F.R. carried out the OSDA and zeolite syntheses work. C.M. performed the catalytic experiments. X.D.Z, T.W., J.L.S., M.M. and A.C. were responsible for completing the manuscript.

Corresponding authors

Correspondence to Xiaodong Zou or Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1616 kb)

Supplementary information

Supplementary Video 1 showing part of 3D electron diffraction data collection (WMV 5880 kb)

Supplementary information

Supplementary Video 2 displaying the reconstructed 3D reciprocal lattice from 880 ED frames (WMV 6537 kb)

Supplementary information

Supplementary Video 3 showing the 3D intersecting channel system in ITQ-39A (WMV 10701 kb)

Supplementary information

Crystallographic data for zeolite ITQ-39A (CIF 5 kb)

Supplementary information

Crystallographic data for zeolite ITQ-39B (CIF 4 kb)

Supplementary information

Crystallographic data for zeolite ITQ-39C (CIF 3 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willhammar, T., Sun, J., Wan, W. et al. Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nature Chem 4, 188–194 (2012). https://doi.org/10.1038/nchem.1253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing