Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Binary fluorous tagging enables the synthesis and separation of a 16-stereoisomer library of macrosphelides

An Erratum to this article was published on 21 February 2012

This article has been updated

Abstract

Fluorous mixture synthesis minimizes the effort to synthesize small-molecule libraries by labelling the molecules rather than the reaction vessels. Reactants are labelled with fluorinated tags and products can later be demixed based on the fluorine content. A limit in the number of available tags can be overcome by using binary encoding so that a total of four tags can label uniquely a library of 16 compounds. This strategy, however, means that separation based on fluorine content alone is not possible. Here, we solve this problem by selectively removing one tag after an initial demixing step; a second demixing provides each individual compound. The usefulness of this strategy is demonstrated by the synthesis of a library that contains all 16 diastereomers of the natural products macrosphelides A and E. Macrosphelide D was not in this library, and so its assigned structure was incorrect. We determined its constitution by using NMR spectroscopy and its configuration by synthesizing four candidate stereoisomers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single- and double-tagging strategies.
Figure 2: Binary tagging with four fluorous tags.
Figure 3: Fragments, tagged quasiisomers and mixture synthesis.
Figure 4: Double demixing illustrated with fraction 2.
Figure 5: Macrosphelide D structure candidates and syntheses.

Similar content being viewed by others

Change history

  • 18 January 2012

    In the version of this Article originally published, it erroneously stated the authors had no competing financial interests. This information has now been corrected in the HTML and PDF versions of the Article.

References

  1. Luo, Z. Y., Zhang, Q. S., Oderaotoshi, Y. & Curran, D. P. Fluorous mixture synthesis: a fluorous-tagging strategy for the synthesis and separation of mixtures of organic compounds. Science 291, 1766–1769 (2001).

    Article  CAS  Google Scholar 

  2. Zhang, W. Fluorous mixture synthesis (FMS) of enantiomers, diastereomers, and compound libraries. Arkivoc 101–109 (2004).

  3. Curran, D. P. in The Handbook of Fluorous Chemistry (eds Gladysz, J. A., Curran, D. P. & Horvath, I. T.) 128–156 (Wiley-VCH, 2004).

    Google Scholar 

  4. Zhang, Q. S. & Curran, D. P. Quasienantiomers and quasiracemates: new tools for identification, analysis, separation, and synthesis of enantiomers. Chem. Eur. J. 11, 4866–4880 (2005).

    Article  CAS  Google Scholar 

  5. O'Brien, M., Denton, R. & Ley, S. V. Lesser-known enabling technologies for organic synthesis. Synthesis 1157–1192 (2011).

  6. Bejot, R. et al. Fluorous synthesis of 18F radiotracers with the [18F]fluoride ion: nucleophilic fluorination as the detagging process. Angew. Chem. Int. Ed. 48, 586–589 (2009).

    Article  CAS  Google Scholar 

  7. McAllister, L. A. et al. A fluorous, Pummerer cyclative-capture strategy for the synthesis of N-heterocycles. Chem. Eur. J. 13, 1032–1046 (2007).

    Article  CAS  Google Scholar 

  8. Yoshida, J. & Itami, K. Tag strategy for separation and recovery. Chem. Rev. 102, 3693–3716 (2002).

    Article  CAS  Google Scholar 

  9. Curran, D. P. Strategy-level separations in organic synthesis: from planning to practice. Angew. Chem. Int. Ed. 37, 1175–1196 (1998).

    Article  CAS  Google Scholar 

  10. Dandapani, S., Jeske, M. & Curran, D. P. Synthesis of all 16 stereoisomers of pinesaw fly sex pheromones – tools and tactics for solving problems in fluorous mixture synthesis. J. Org. Chem. 70, 9447–9462 (2005).

    Article  CAS  Google Scholar 

  11. Dandapani, S., Jeske, M. & Curran, D. P. Stereoisomer libraries: total synthesis of all 16 stereoisomers of the pine sawfly sex pheromone by a fluorous mixture-synthesis approach. Proc. Natl Acad. Sci. USA 101, 12008–12012 (2004).

    Article  CAS  Google Scholar 

  12. Curran, D. P. in The Handbook of Fluorous Chemistry (eds Gladysz, J. A., Curran, D. P. & Horvath, I. T.) 101–127 (Wiley-VCH, 2004).

    Google Scholar 

  13. Yang, F., Newsome, J. J. & Curran, D. P. Structure assignment of lagunapyrone B by fluorous mixture synthesis of four candidate stereoisomers. J. Am. Chem. Soc. 128, 14200–14205 (2006).

    Article  CAS  Google Scholar 

  14. Jung, W-H. et al. Confirmation of the stereostructure of (+)-cytostatin by fluorous mixture synthesis of four candidate stereoisomers. Angew. Chem. Int. Ed. 47, 1130–1133 (2008).

    Article  CAS  Google Scholar 

  15. Curran, D. P., Moura-Letts, G. & Pohlman, M. Solution-phase mixture synthesis with fluorous tagging en route: total synthesis of an eight-member stereoisomer library of passifloricins. Angew. Chem. Int. Ed. 45, 2423–2426 (2006).

    Article  CAS  Google Scholar 

  16. Wilcox, C. S. & Turkyilmaz, S. Oligomeric ethylene glycols as sorting tags for parallel and combinatorial mixture synthesis. Tetrahedron Lett. 46, 1827–1829 (2005).

    Article  CAS  Google Scholar 

  17. Gudipati, V., Curran, D. P. & Wilcox, C. S. Solution-phase parallel synthesis with oligoethylene glycol sorting tags. Preparation of all four stereoisomers of the hydroxybutenolide fragment of murisolin and related acetogenins. J. Org. Chem. 71, 3599–3607 (2006).

    Article  CAS  Google Scholar 

  18. Curran, D. P. et al. Total synthesis of a 28-member stereoisomer library of murisolins. J. Am. Chem. Soc. 128, 9561–9573 (2006).

    Article  CAS  Google Scholar 

  19. Hayashi, M. et al. Macrosphelide, a novel inhibitor of cell–cell adhesion molecule. I. Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 48, 1435–1439 (1995).

    Article  CAS  Google Scholar 

  20. Sunazuka, T. et al. Relative and absolute stereochemistries and total synthesis of (+)-macrosphelides A and B, potent, orally bioavailable inhibitors of cell–cell adhesion. J. Am. Chem. Soc. 119, 10247–10248 (1997).

    Article  CAS  Google Scholar 

  21. Sunazuka, T. et al. Absolute stereochemistries and total synthesis of (+)/(−)-macrosphelides, potent, orally bioavailable inhibitors of cell–cell adhesion. Tetrahedron 61, 3789–3803 (2005).

    Article  CAS  Google Scholar 

  22. Numata, A. et al. Novel antitumour metabolites produced by a fungal strain from a sea hare. Tetrahedron Lett. 38, 8215–8218 (1997).

    Article  CAS  Google Scholar 

  23. Yamada, T. et al. Absolute stereostructures of cell-adhesion inhibitors, macrosphelides C, E–G and I, produced by a Periconia species separated from an Aplysia sea hare. J. Chem. Soc. Perkin Trans. 1 3046–3053 (2001).

  24. Takamatsu, S. et al. Macrosphelides C and D, novel inhibitors of cell adhesion. J. Antibiot. 50, 878–880 (1997).

    Article  CAS  Google Scholar 

  25. Schelhaas, M. & Waldmann, H. Protecting group strategies in organic synthesis. Angew. Chem. Int. Ed. Engl. 35, 2056–2083 (1996).

    Article  CAS  Google Scholar 

  26. Greene, T. W. & Wuts, P. G. M. Protective Groups in Organic Synthesis 3rd edn (Wiley-Interscience, 1999).

    Book  Google Scholar 

  27. Kocienski, P. J. Protecting Groups (Thieme, 1999).

    Google Scholar 

  28. Matsuya, Y. & Nemoto, H. Recent advances in macrosphelide synthesis. Heterocycles 65, 1741–1749 (2005).

    Article  CAS  Google Scholar 

  29. Takahashi, T., Kusaka, S., Doi, T., Sunazuka, T. & Omura, S. A combinatorial synthesis of a macrosphelide library utilizing a palladium-catalyzed carbonylation on a polymer support. Angew. Chem. Int. Ed. 42, 5230–5234 (2003).

    Article  CAS  Google Scholar 

  30. Prasad, K. R. & Gutala, P. Enantioselective total synthesis of macrosphelides A and E. Tetrahedron 67, 4514–4520 (2011).

    Article  CAS  Google Scholar 

  31. Paek, S-M. et al. Concise syntheses of (+)-macrosphelides A and B. Org. Lett. 7, 3159–3162 (2005).

    Article  CAS  Google Scholar 

  32. Inanaga, J., Hirata, K., Hiroko, S., Katsuki, T. J. & Yamaguchi, M. A rapid esterification by means of mixed anhydride and its application to large-ring lactonization. Bull. Chem. Soc. Jpn 52, 1989–1993 (1979).

    Article  CAS  Google Scholar 

  33. Yamada, T., Minoura, K., Tanaka, R. & Numata, A. Cell-adhesion inhibitors produced by a sea hare-derived Periconia sp. J. Antibiot. 60, 370–375 (2007).

    Article  CAS  Google Scholar 

  34. Corey, E. J., Brunelle, D. J. & Nicolaou, K. C. A translactonization route to macrocyclic lactones. J. Am. Chem. Soc. 99, 7359–7360 (1977).

    Article  CAS  Google Scholar 

  35. Wender, P. A., Gulledge, A. V., Jankowski, O. D. & Seto, H. Isoapoptolidin: a structure and activity of the ring-expanded isomer of apoptolidin. Org. Lett. 4, 3819–3822 (2002).

    Article  CAS  Google Scholar 

  36. Pennington, J. D., Williams, H. J., Salomon, A. R. & Sulikowski, G. A. Toward a stable apoptolidin derivative: identification of isoapoptolidin and selective deglycosylation of apoptolidin. Org. Lett. 4, 3823–3825 (2002).

    Article  CAS  Google Scholar 

  37. Park, P. K., O'Malley, S. J., Schmidt, D. R. & Leighton, J. L. Total synthesis of dolabelide D. J. Am. Chem. Soc. 128, 2796–2797 (2006).

    Article  CAS  Google Scholar 

  38. Jung, W. H. et al. Total synthesis and biological evaluation of C16 analogs of (–)-dictyostatin. J. Med. Chem. 50, 2951–2966 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Institutes of Health for research support (National Institute of General Medical Sciences) and for a grant to purchase a 700 MHz NMR spectrometer. D-H.C. was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-214-C00214). We thank K. Damodaran and S. Bowser for help with NMR spectra. We thank T. Yamada, Osaka University of Pharmaceutical Sciences, for providing copies of the spectra of macrosphelide M.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the experiments and analysed the data. All authors, except D.P.C., performed the experiments: D-H.C. made the precursors and prepared a preliminary library, J.J.S. made the final library and carried out the demixing steps with K.Z., K.Z. purified and characterized the library members and M.K.S. made and characterized the macrosphelide D candidates. D.P.C wrote the paper. All authors commented on the manuscript.

Corresponding author

Correspondence to Dennis P. Curran.

Ethics declarations

Competing interests

D.P.C. owns an equity interest in Fluorous Technologies, Inc., supplier of some reagents and HPLC columns used in this work. The other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8449 kb)

Supplementary information

Chemical compounds table 1 (XLS 20 kb)

Supplementary information

Chemical compounds table 2 (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curran, D., Sinha, M., Zhang, K. et al. Binary fluorous tagging enables the synthesis and separation of a 16-stereoisomer library of macrosphelides. Nature Chem 4, 124–129 (2012). https://doi.org/10.1038/nchem.1233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing