Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reaction-based small-molecule fluorescent probes for chemoselective bioimaging

Abstract

The dynamic chemical diversity of elements, ions and molecules that form the basis of life offers both a challenge and an opportunity for study. Small-molecule fluorescent probes can make use of selective, bioorthogonal chemistries to report on specific analytes in cells and in more complex biological specimens. These probes offer powerful reagents to interrogate the physiology and pathology of reactive chemical species in their native environments with minimal perturbation to living systems. This Review presents a survey of tools and tactics for using such probes to detect biologically important chemical analytes. We highlight design criteria for effective chemical tools for use in biological applications as well as gaps for future exploration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of organic and metal-mediated reaction-based strategies for the chemoselective bioimaging of small-molecule and metal ion analytes in biological systems.
Figure 2: Representative oxidative cycloaddition reactions for fluorescence bioimaging.
Figure 3: Representative oxidative cleavage reactions for small-molecule detection.
Figure 4: Representative reductive cleavage, nucleophilic reactions and tandem processes for detection of small molecules.
Figure 5: Representative metal-ligand substitution and metal-mediated redox addition/cleavage reactions for small-molecule detection.
Figure 6: Representative Lewis acid hydrolysis, organometallic and small-molecule activation reactions for specific metal ion detection.
Figure 7: Representative bioimaging applications with reaction-based small-molecule fluorescent probes for highly reactive species and metal ions.

Similar content being viewed by others

References

  1. Czarnik, A. W. Chemical communication in water using fluorescent chemosensors. Acc. Chem. Res. 27, 302–308 (1994).

    Article  CAS  Google Scholar 

  2. Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S. & Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev. 37, 1465–1472 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Cho, D. G. & Sessler, J. L. Modern reaction-based indicator systems. Chem. Soc. Rev. 38, 1647–1662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jun, M. E., Roy, B. & Ahn, K. H. 'Turn-on' fluorescent sensing with 'reactive' probes. Chem. Commun. 47, 7583–7601 (2011).

    Article  CAS  Google Scholar 

  5. Du, J., Hu, M., Fan, J. & Peng, X. Fluorescent chemodosimeters using 'mild' chemical events for the detection of small anions and cations in biological and environmental media. Chem. Soc. Rev. 41, 4511–4535 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Nagano, T. et al. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998).

    Article  PubMed  Google Scholar 

  7. Nagano, T., Takizawa, H. & Hirobe, M. Reactions of nitric oxide with amines in the presence of dioxygen. Tetrahedron Lett. 36, 8239–8242 (1995).

    Article  CAS  Google Scholar 

  8. Kojima, H. et al. Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Nagano, T., Gabe, Y., Urano, Y., Kikuchi, K. & Kojima, H. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126, 3357–3367 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Sasaki, E. et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127, 3684–3685 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Terai, T., Urano, Y., Izumi, S., Kojima, H. & Nagano, T. A practical strategy to create near-infrared luminescent probes: conversion from fluorescein-based sensors. Chem. Commun. 48, 2840–2842 (2012).

    Article  CAS  Google Scholar 

  12. Yang, Y. J. et al. A highly selective low-background fluorescent imaging agent for nitric oxide. J. Am. Chem. Soc. 132, 13114–13116 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Song, B., Wang, G. L., Tan, M. Q. & Yuan, J. L. A europium(III) complex as an efficient singlet oxygen luminescence probe. J. Am. Chem. Soc. 128, 13442–13450 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Lippert, A. R., De Bittner, G. C. V. & Chang, C. J. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. Acc. Chem. Res. 44, 793–804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang, M. C. Y., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lo, L. C. & Chu, C. Y. Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun. 2728–2729 (2003).

  17. Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol. 3, 349–349 (2007).

    Article  CAS  Google Scholar 

  18. Du, L. P., Li, M. Y., Zheng, S. L. & Wang, B. H. Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron Lett. 49, 3045–3048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dickinson, B. C., Huynh, C. & Chang, C. J. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132, 5906–5915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karton-Lifshin, N. et al. A unique paradigm for a turn-on near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide. J. Am. Chem. Soc. 133, 10960–10965 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Srikun, D., Miller, E. W., Dornaille, D. W. & Chang, C. J. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. J. Am. Chem. Soc. 130, 4596–4597 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Srikun, D., Albers, A. E., Nam, C. I., Iavaron, A. T. & Chang, C. J. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller, E. W., Dickinson, B. C. & Chang, C. J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl Acad. Sci. USA 107, 15681–15686 (2010).

    Article  PubMed  Google Scholar 

  25. Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. & Chang, C. J. Nox2 redox signaling maintains essential cell populations in the brain. Nature Chem. Biol. 7, 106–112 (2011).

    Article  CAS  Google Scholar 

  26. Van de Bittner, G. C., Dubikovskaya, E. A., Bertozzi, C. R. & Chang, C. J. In vivo imaging of hydrogen peroxide production in a murine tumor model with a chemoselective bioluminescent reporter. Proc. Natl Acad. Sci. USA 107, 21316–21321 (2010).

    Article  PubMed  Google Scholar 

  27. Lippert, A. R., Gschneidtner, T. & Chang, C. J. Lanthanide-based luminescent probes for selective time-gated detection of hydrogen peroxide in water and in living cells. Chem. Commun. 46, 7510–7512 (2010).

    Article  CAS  Google Scholar 

  28. Du, L. P. Y., Ni, N. T. Y., Li, M. Y. & Wang, B. H. A fluorescent hydrogen peroxide probe based on a 'click' modified coumarin fluorophore. Tetrahedron Lett. 51, 1152–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Charkoudian, L. K., Pham, D. M. & Franz, K. J. A pro-chelator triggered by hydrogen peroxide inhibits iron-promoted hydroxyl radical formation. J. Am. Chem. Soc. 128, 12424–12425 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Wei, Y. & Guo, M. Hydrogen peroxide triggered prochelator activation, subsequent metal chelation, and attenuation of the fenton reaction. Angew. Chem. Int. Ed. 46, 4722–4725 (2007).

    Article  Google Scholar 

  31. Jourden, J. L. M. & Cohen, S. M. Hydrogen peroxide activated matrix metalloproteinase inhibitors: a prodrug approach. Angew. Chem. Int. Ed. 49, 6795–6797 (2010).

    Article  CAS  Google Scholar 

  32. Kuang, Y. Y., Baakrishnan, K., Gandhi, V. & Peng, X. H. Hydrogen peroxide inducible DNA cross-linking agents: targeted anticancer prodrugs. J. Am. Chem. Soc. 133, 19278–19281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sella, E. & Shabat, D. Self-immolative dendritic probe for direct detection of triacetone triperoxide. Chem. Commun. 5701–5703 (2008).

  34. Broaders, K. E., Grandhe, S. & Frechet, J. M. J. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics. J. Am. Chem. Soc. 133, 756–758 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Cocheme, H. M. et al. Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix. Cell Metab. 13, 340–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abo, M. et al. Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629–10637 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Lippert, A. R., Keshari, K. R., Kurhanewicz, J. & Chang, C. J. A hydrogen peroxide-responsive hyperpolarized 13C MRI contrast agent. J. Am. Chem. Soc. 133, 3776–3779 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, D., Wang, H. L., Sun, Z. N., Chung, N. W. & Shen, J. G. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc. 128, 6004–6005 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Sun, Z. N. et al. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org. Lett. 11, 1887–1890 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Peng, T. & Yang, D. HKGreen-3: a rhodol-based fluorescent probe for peroxynitrite. Org. Lett. 12, 4932–4935 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, W. J., Guo, C., Liu, L. H., Qin, J. G. & Yang, C. L. Naked-eye visible and fluorometric dual-signaling chemodosimeter for hypochlorous acid based on water-soluble p-methoxyphenol derivative. Org. Biomol. Chem. 9, 5560–5563 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Koide, Y., Urano, Y., Hanaoka, K., Terai, T. & Nagano, T. Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J. Am. Chem. Soc. 133, 5680–5682 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H. J. & Nagano, T. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278, 3170–3175 (2003).

    Article  PubMed  Google Scholar 

  44. Shepherd, J. et al. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol. 14, 1221–1231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, F. B. A. et al. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 133, 11030–11033 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Garner, A. L. et al. Specific fluorogenic probes for ozone in biological and atmospheric samples. Nature Chem. 1, 316–321 (2009).

    Article  CAS  Google Scholar 

  47. Lippert, A. R., New, E. J. & Chang, C. J. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J. Am. Chem. Soc. 133, 10078–10080 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Peng, H. J. et al. A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew. Chem. Int. Ed. 50, 9672–9675 (2011).

    Article  CAS  Google Scholar 

  49. Yu, F. B. A. et al. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem. Commun. 48, 2852–2854 (2012).

    Article  CAS  Google Scholar 

  50. Montoya, L. A. & Pluth, M. D. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells. Chem. Commun. 48, 4767–4769 (2012).

    Article  CAS  Google Scholar 

  51. Chen, S., Chen, Z. J., Ren, W. & Ai, H. W. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors. J. Am. Chem. Soc. 134, 9589–9592 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Qian, Y. et al. Selective fluorescent probes for live-cell monitoring of sulphide. Nature Commun. 2, 495 (2011).

    Article  CAS  Google Scholar 

  53. Liu, C. R. et al. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem. Int. Ed. 50, 10327–10329 (2011).

    Article  CAS  Google Scholar 

  54. Liu, C. et al. Reaction based fluorescent probes for hydrogen sulfide. Org. Lett. 14, 2184–2187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maeda, H. et al. 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent alternatives to Ellman's reagent in thiol-quantification enzyme assays. Angew. Chem. Int. Ed. 44, 2922–2925 (2005).

    Article  CAS  Google Scholar 

  56. Maeda, H. et al. A design of fluorescent probes for superoxide based on a nonredox mechanism. J. Am. Chem. Soc. 127, 68–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, W., Fu, Q. Q., Fan, H. Y., Ho, J. & Wang, W. A highly selective fluorescent probe for thiophenols. Angew. Chem. Int. Ed. 46, 8445–8448 (2007).

    Article  CAS  Google Scholar 

  58. Bouffard, J., Kim, Y., Swager, T. M., Weissleder, R. & Hilderbrand, S. A. A highly selective fluorescent probe for thiol bioimaging. Org. Lett. 10, 37–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Pires, M. M. & Chmielewski, J. Fluorescence imaging of cellular glutathione using a latent rhodamine. Org. Lett. 10, 837–840 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Reddie, K. G. et al. Fluorescent coumarin thiols measure biological redox couples. Org. Lett. 14, 680–683 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nguyen, B. T. & Anslyn, E. V. Indicator-displacement assays. Coord. Chem. Rev. 250, 3118–3127 (2006).

    Article  CAS  Google Scholar 

  62. Fabbrizzi, L., Licchelli, M., Pallavicini, P., Sacchi, D. & Taglietti, A. Sensing of transition metals through fluorescence quenching or enhancement—a review. Analyst 121, 1763–1768 (1996).

    Article  CAS  Google Scholar 

  63. Lim, M. H. & Lippard, S. J. Fluorescence-based nitric oxide detection by ruthenium porphyrin fluorophore complexes. Inorg. Chem. 43, 6366–6370 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Katayama, Y., Takahashi, S. & Maeda, M. Design, synthesis and characterization of a novel fluorescent probe for nitric oxide (nitrogen monoxide). Anal. Chim. Acta 365, 159–167 (1998).

    Article  CAS  Google Scholar 

  65. Franz, K. J., Singh, N. & Lippard, S. J. Metal-based NO sensing by selective ligand dissociation. Angew. Chem. Int. Ed. 39, 2120–2122 (2000).

    Article  CAS  Google Scholar 

  66. Hilderbrand, S. A., Lim, M. H. & Lippard, S. J. Dirhodium tetracarboxylate scaffolds as reversible fluorescence-based nitric oxide sensors. J. Am. Chem. Soc. 126, 4972–4978 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Royzen, M., Dai, Z. H. & Canary, J. W. Ratiometric displacement approach to Cu(II) sensing by fluorescence. J. Am. Chem. Soc. 127, 1612–1613 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Wu, Q. Y. & Anslyn, E. V. Catalytic signal amplification using a Heck reaction. an example in the fluorescence sensing of Cu(II). J. Am. Chem. Soc. 126, 14682–14683 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Ojida, A. et al. Bis(Dpa-Zn-II) appended xanthone: excitation ratiometric chemosensor for phosphate anions. Angew. Chem. Int. Ed. 45, 5518–5521 (2006).

    Article  CAS  Google Scholar 

  70. Ojida, A. et al. Design of dual-emission chemosensors for ratiometric detection of ATP derivatives. Chem. Asian J. 1, 555–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Choi, M. G., Cha, S., Lee, H., Jeon, H. L. & Chang, S. K. Sulfide-selective chemosignaling by a Cu2 complex of dipicolylamine appended fluorescein. Chem. Commun. 7390–7392 (2009).

  72. Sasakura, K. et al. Development of a highly selective fluorescence probe for hydrogen sulfide. J. Am. Chem. Soc. 133, 18003–18005 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. Intramolecular reductive nitrosylation: reaction of nitric oxide and a copper(II) complex of a cyclam derivative with pendant luminescent chromophores. J. Am. Chem. Soc. 126, 6564–6565 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Lim, M. H., Xu, D. & Lippard, S. J. Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nature Chem. Biol. 2, 375–380 (2006).

    Article  CAS  Google Scholar 

  75. McQuade, L. E. et al. Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe. Proc. Natl Acad. Sci. USA 107, 8525–8530 (2010).

    Article  PubMed  Google Scholar 

  76. Pluth, M. D., Chan, M. R., McQuade, L. E. & Lippard, S. J. Seminaphthofluorescein-based fluorescent probes for imaging nitric oxide in live cells. Inorg. Chem. 50, 9385–9392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hitomi, Y., Takeyasu, T., Funabiki, T. & Kodera, M. Detection of enzymatically generated hydrogen peroxide by metal-based fluorescent probe. Anal. Chem. 83, 9213–9216 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Song, D. et al. A fluorescence turn-on H2O2 probe exhibits lysosome-localized fluorescence signals. Chem. Commun. 48, 5449–5451 (2012).

    Article  CAS  Google Scholar 

  79. Domaille, D. W., Que, E. L. & Chang, C. J. Synthetic fluorescent sensors for studying the cell biology of metals. Nature Chem. Biol. 4, 168–175 (2008).

    Article  CAS  Google Scholar 

  80. Que, E. L., Domaille, D. W. & Chang, C. J. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Chae, M. Y. & Czarnik, A. W. Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling. J. Am. Chem. Soc. 114, 9704–9705 (1992).

    Article  CAS  Google Scholar 

  82. Dujols, V., Ford, F. & Czarnik, A. W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. J. Am. Chem. Soc. 119, 7386–7387 (1997).

    Article  CAS  Google Scholar 

  83. Guo, Z., Zhu, W. H., Zhu, M. M., Wu, X. M. & Tian, H. Near-infrared cell-permeable Hg2-selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chem. Eur. J. 16, 14424–14432 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Ko, S. K., Yang, Y. K., Tae, J. & Shin, I. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc. 128, 14150–14155 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, X. L., Xiao, Y. & Qian, X. H. A ratiometric fluorescent probe based on FRET for imaging Hg2 ions in living cells. Angew. Chem. Int. Ed. 47, 8025–8029 (2008).

    Article  CAS  Google Scholar 

  86. Lee, M. H., Lee, S. W., Kim, S. H., Kang, C. & Kim, J. S. Nanomolar Hg(II) detection using Nile blue chemodosimeter in biological media. Org. Lett. 11, 2101–2104 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Shi, W. & Ma, H. Rhodamine B thiolactone: a simple chemosensor for Hg2 in aqueous media. Chem. Commun. 1856–1858 (2008).

  88. Zhan, X.-Q., Qian, Z.-H., Zheng, H., Su, B.-Y., Lan, Z. & Xu, J.-G. Rhodamine thiospirolactone. highly selective and sensitive reversible sensing of Hg(II). Chem. Commun. 1859–1861 (2008).

  89. Kim, J. H. et al. Fluorescent coumarinyldithiane as a selective chemodosimeter for mercury(II) ion in aqueous solution. Tetrahedron Lett. 50, 5958–5961 (2009).

    Article  CAS  Google Scholar 

  90. Rao, A. S. et al. Reaction-based two-photon probes for mercury ions: fluorescence imaging with dual optical windows. Org. Lett. 14, 2598–2601 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Kierat, R. M. & Kramer, R. A fluorogenic and chromogenic probe that detects the esterase activity of trace copper(II). Bioorg. Med. Chem. Lett. 15, 4824–4827 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Kovacs, J. & Mokhir, A. Catalytic hydrolysis of esters of 2-hydroxypyridine derivatives for Cu2 detection. Inorg. Chem. 47, 1880–1882 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Chatterjee, A. et al. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J. Am. Chem. Soc. 131, 2040–2041 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, Z. & Fahrni, C. J. A fluorogenic probe for the copper(I)-catalyzed azide-alkyne ligation reaction: modulation of the fluorescence emission via 3(n,π*)-1 (π,π*) inversion. J. Am. Chem. Soc. 126, 8862–8863 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Le Droumaguet, C., Wang, C. & Wang, Q. Fluorogenic click reaction. Chem. Soc. Rev. 39, 1233–1239 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Viguier, R. F. H. & Hulme, A. N. A sensitized europium complex generated by micromolar concentrations of copper(I): toward the detection of copper(I) in biology. J. Am. Chem. Soc. 128, 11370–11371 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Garner, A. L. & Koide, K. Studies of a fluorogenic probe for palladium and platinum leading to a palladium-specific detection method. Chem. Commun. 86–88 (2009).

  98. Garner, A. L. & Koide, K. Oxidation state-specific fluorescent method for palladium(II) and platinum(IV) based on the catalyzed aromatic Claisen rearrangement. J. Am. Chem. Soc. 130, 16472–16473 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Santra, M., Ko, S. K., Shin, I. & Ahn, K. H. Fluorescent detection of palladium species with an O-propargylated fluorescein. Chem. Commun. 46, 3964–3966 (2010).

    Article  CAS  Google Scholar 

  100. Zhu, B. C. et al. A 4-hydroxynaphthalimide-derived ratiometric fluorescent chemodosimeter for imaging palladium in living cells. Chem. Commun. 47, 8656–8658 (2011).

    Article  CAS  Google Scholar 

  101. Song, F. L., Watanabe, S., Floreancig, P. E. & Koide, K. Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc. 130, 16460–16461 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Ando, S. & Koide, K. Development and applications of fluorogenic probes for mercury(II) based on vinyl ether oxymercuration. J. Am. Chem. Soc. 133, 2556–2566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santra, M. et al. A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species. Chem. Commun. 2115–2117 (2009).

  104. Lin, W. Y., Cao, X. W., Ding, Y. D., Yuan, L. & Long, L. L. A highly selective and sensitive fluorescent probe for Hg2 imaging in live cells based on a rhodamine-thioamide–alkyne scaffold. Chem. Commun. 46, 3529–3531 (2010).

    Article  CAS  Google Scholar 

  105. Taki, M., Iyoshi, S., Ojida, A., Hamachi, I. & Yamamoto, Y. Development of highly sensitive fluorescent probes for detection of intracellular copper(I) in living systems. J. Am. Chem. Soc. 132, 5938–5939 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Au-Yeung, H. Y., New, E. J. & Chang, C. J. A selective reaction-based fluorescent probe for detecting cobalt in living cells. Chem. Commun. 48, 5268–5270 (2012).

    Article  CAS  Google Scholar 

  107. De Silva, A. P. et al. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Palmer, A. E. & Tsien, R. Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nature Protoc. 1, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  109. Yang, Y., Zhao, Q., Feng, W. & Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev. http://dx.doi.org/10.1021/cr2004103 (2012).

Download references

Acknowledgements

We thank the NIH (GM 79465), the Packard Foundation, Amgen, Astra Zeneca and Novartis for funding our laboratory's work on bioimaging. C.J.C. is an Investigator with the Howard Hughes Medical Institute. J.C. thanks the Human Frontiers Science Program for a postdoctoral fellowship and S.C.D. thanks Novartis for a graduate fellowship. We thank L. Lavis for sharing a figure template.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J., Dodani, S. & Chang, C. Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nature Chem 4, 973–984 (2012). https://doi.org/10.1038/nchem.1500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing