Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme oxatriquinanes and a record C–O bond length

Abstract

Oxatriquinanes are fused, tricyclic oxonium ions that are known to have exceptional stability compared to simple alkyl oxonium salts. C–O bonds in ethers are generally 1.43 Å in length, but oxatriquinane has been found to have C–O bond lengths of 1.54 Å. A search of the Cambridge Structural Database turned up no bona fide C–O bond length exceeding this value. Computational modelling of oxatriquinane alongside other alkyl oxonium ions indicated that the electronic consequences of molecular strain were primarily responsible for the observed bond elongation. We also show that substitution of the oxatriquinane ring system with alkyl groups of increasing steric demand pushes the C–O bond to unheard of distances, culminating in a tert-butyl derivative at a predicted 1.60 Å. Chemical synthesis and an X-ray crystallographic study of these compounds validated the results of the modelling work and, finally, an extraordinary 1.622 Å C–O bond was observed in 1,4,7-tri-tert-butyloxatriquinane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bond length, angle and dihedral distortion energies for diethyl ether (MP2/6-31 + G**).
Figure 2: Trends in C–O distances versus bond attributes.
Figure 3: Synthesis of substituted oxatriquinanes 15 and 16.
Figure 4: Deuterium exchange in 15 in D3COD solution.
Figure 5: X-ray crystal structure of tri-tert-butyloxatriquinane 16 and its [CHB11Cl11] counterion.

Similar content being viewed by others

References

  1. Møller, C. & Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934).

    Article  Google Scholar 

  2. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  3. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  4. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  5. Weinhold, F. & Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor–Acceptor Perspective (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  6. Hoffmann, R. & Hopf, H. Learning from molecules in distress. Angew. Chem. Int. Ed. 47, 4474–4481 (2008).

    Article  CAS  Google Scholar 

  7. Allen, F. H. et al. Tables of bond lengths determined by X-ray and neutron-diffraction.1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2, S1–S19 (1987).

    Article  Google Scholar 

  8. Kaupp, G. & Boy, J. Overlong C–C single bonds. Angew. Chem. Int. Ed. Engl. 36, 48–49 (1997).

    Article  CAS  Google Scholar 

  9. Chandrasekhar, J. Organic structures with remarkable carbon carbon distances. Curr. Sci. 63, 114–116 (1992).

    CAS  Google Scholar 

  10. Dahl, J. E., Liu, S. G. & Carlson, R. M. K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2002).

    Article  Google Scholar 

  11. Fokin, A. A. et al. Stable alkanes containing very long carbon−carbon bonds. J. Am. Chem. Soc. 134, 13641–13650 (2012).

    Article  CAS  Google Scholar 

  12. Oliva, J. M., Allan, N. L., Schleyer, P. V., Vinas, C. & Teixidor, F. Strikingly long C···C distances in 1,2-disubstituted ortho-carboranes and their dianions. J. Am. Chem. Soc. 127, 13538–13547 (2005).

    Article  CAS  Google Scholar 

  13. Mascal, M., Hafezi, N., Meher, N. K. & Fettinger, J. C. Oxatriquinane and oxatriquinacene: extraordinary oxonium ions. J. Am. Chem. Soc. 130, 13532–13533 (2008).

    Article  CAS  Google Scholar 

  14. Bruno, I. J. et al. New software for searching the Cambridge Structural Database and visualising crystal structures. Acta Crystallogr. B58, 389–397 (2002).

    Article  CAS  Google Scholar 

  15. Spiridonov, V. P., Vogt, N. & Vogt, J. Determination of molecular structure in terms of potential energy functions from gas-phase electron diffraction supplemented by other experimental and computational data. Struct. Chem. 12, 349–376 (2001).

    Article  CAS  Google Scholar 

  16. Schreiner, P. R. et al. Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces. Nature 477, 308–311 (2011).

    Article  CAS  Google Scholar 

  17. Jones, P. G. Crystal structure determination: a critical view. Chem Soc. Rev. 13, 157–172 (1984).

    Article  CAS  Google Scholar 

  18. Childs, R. F., Kostyk, M. D., Lock, C. J. L. & Mahendran, M. Structural studies on 6-ethoxytetrahydropyrylium cations; stereoelectronic control in the reactions of lactonium salts. Can. J. Chem. 69, 2024–2032 (1991).

    Article  CAS  Google Scholar 

  19. Childs, R. F. et al. Structure, energetics and homoaromaticity. Pure Appl. Chem. 58, 111–128 (1986).

    Article  CAS  Google Scholar 

  20. Lork, E., Görtler, B., Knapp, C. & Mews, R. Alkylation of OPF3 by MeOSO+AsF6: the unexpected formation of a dioxadiarsetane. Solid State Sci. 4, 1403–1411 (2002).

    Article  CAS  Google Scholar 

  21. Etzkorn, M. et al. 1-Oxoniaadamantane. Eur. J. Org. Chem. 4555–4558 (2008).

    Article  Google Scholar 

  22. Akkerman, K., Beckmann, J. & Duthie, A. 1,1′-(1,4-Butanediyl)bis(tetrahydrofuranium) trifluoromethanesulfonate. Acta Crystallogr. E62, o2781–o2782 (2006).

    Google Scholar 

  23. Ishida, H. Protonation effect on C–N bond length of alkylamines studied by molecular orbital calculations. Z. Naturforsch. 55a, 769–771 (2000).

    Google Scholar 

  24. Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    Article  CAS  Google Scholar 

  25. Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 18, 9–15 (1985).

    Article  CAS  Google Scholar 

  26. Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  27. Wiberg, K. B. Concept of strain in organic chemistry. Angew. Chem. Int. Ed. Engl. 25, 312–322 (1986).

    Article  Google Scholar 

  28. Engler, E. M., Andose, J. D. & von Schleyer, P. R. Critical evaluation of molecular mechanics. J. Am. Chem. Soc. 95, 8005–8025 (1973).

    Article  CAS  Google Scholar 

  29. Cremer, D. & Kraka, E. Theoretical determination of molecular structure and conformation. 15. Three-membered rings: bent bonds, ring strain, and surface delocalization. J. Am. Chem. Soc. 107, 3800–3810 (1985).

    Article  CAS  Google Scholar 

  30. Wiberg, K. A. Application of the Pople–Santry–Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1966).

    Article  Google Scholar 

  31. Cioslowski, J. & Mixon, S. T. Topological properties of electron density in search of steric interactions in molecules: electronic structure calculations on ortho-substituted biphenyls. J. Am. Chem. Soc. 114, 4382–4387 (1992).

    Article  CAS  Google Scholar 

  32. Stoyanov, E. S. et al. The R3O+···H+ hydrogen bond: toward a tetracoordinate oxadionium(2+) ion. J. Am. Chem. Soc. 134, 707–714 (2012).

    Article  CAS  Google Scholar 

  33. Mascal, M., Hafezi, N. & Toney, M. D. 1,4,7-Trimethyloxatriquinane: SN2 reaction at tertiary carbon. J. Am. Chem. Soc. 132, 10662–10664 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Science Foundation (grants CHE-0957798 to M.M. and CHE-1058483 to M.P.M.). G.G. thanks the Turkish Higher Education Council for a studentship.

Author information

Authors and Affiliations

Authors

Contributions

G.G. performed synthetic, computational and crystallographic work. N.H. and W.L.S. performed synthetic work. M.M.O. provided assistance with crystallographic work. I.V.S. obtained crystals of 16. F.S.T. performed the crystallographic work on 16. M.P.M. performed computational work and interpreted computational results. M.M. supervised the project, composed the manuscript, and performed database and computational work.

Corresponding author

Correspondence to Mark Mascal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2721 kb)

Supplementary information

Crystallographic data for compound 13 (CIF 29 kb)

Supplementary information

Crystallographic data for compound 14 (CIF 16 kb)

Supplementary information

Crystallographic data for compound 15 (CIF 11 kb)

Supplementary information

Crystallographic data for compound 16 (CIF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunbas, G., Hafezi, N., Sheppard, W. et al. Extreme oxatriquinanes and a record C–O bond length. Nature Chem 4, 1018–1023 (2012). https://doi.org/10.1038/nchem.1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing