Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A flow-system array for the discovery and scale up of inorganic clusters

Abstract

The batch synthesis of inorganic clusters can be both time consuming and limited by a lack of reproducibility. Flow-system approaches, now common in organic synthesis, have not been utilized widely for the synthesis of clusters. Herein we combine an automated flow process with multiple batch crystallizations for the screening and scale up of syntheses of polyoxometalates and manganese-based single-molecule magnets. Scale up of the synthesis of these architectures was achieved by programming a multiple-pump reactor system to vary reaction conditions sequentially, and thus explore a larger parameter space in a shorter time than conventionally possible. Also, the potential for using the array as a discovery tool is demonstrated. Successful conditions for product isolation were identified easily from the array of reactions, and a direct route to ‘scale up’ was then immediately available simply by continuous application of these flow conditions. In all cases, large quantities of phase-pure material were obtained and the time taken for the discovery, repetition and scale up decreased.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction input parameters were altered to generate reaction arrays to be screened for the crystallization of polyoxomolybdate targets.
Figure 2: Arbitrary ratios of reagent flow rates used to create the 5 × 10 reaction arrays for screening of the syntheses of {Mo36} (1) and {Mo154} (2).
Figure 3: Charts of pH measurements for the 5 × 10 screening arrays.
Figure 4: Plot of ultraviolet–visible absorbance for diluted fractions of an {Mo154} reaction array that shows a similar periodic trend to the pH.
Figure 5: The reagent inputs to the flow-system array were switched to those relevant for the syntheses of manganese-based SMMs.
Figure 6: Percentage yield as a function of manganese concentration [Mn] and ligand concentration [L] (mol l−1) in the synthesis of compound 7.

Similar content being viewed by others

References

  1. Luis, S. V. & Garcia-Verdugo, E. Chemical Reactions and Processes under Flow Conditions (Royal Society of Chemistry, 2010).

    Google Scholar 

  2. Seeberger, P. H. Organic synthesis: scavengers in full flow. Nature Chem. 1, 258–260 (2009).

    Article  CAS  Google Scholar 

  3. Wegner, J., Ceylan, S. & Kirschning, A. Ten key issues in modern flow chemistry. Chem. Commun. 47, 4583–4592 (2011).

    Article  CAS  Google Scholar 

  4. Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011).

    Article  CAS  Google Scholar 

  5. Abou-Hassan, A., Sandre, O. & Cabuil, V. Microfluidics in inorganic chemistry. Angew. Chem. Int. Ed. 49, 6268–6286 (2010).

    Article  CAS  Google Scholar 

  6. Long, D-L., Burkholder, E. & Cronin, L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Long, D-L., Tsunashima, R. & Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 49, 1736–1758 (2010).

    Article  CAS  Google Scholar 

  8. Evangelisti, M. & Brechin, E. K. Recipes for enhanced molecular cooling. Dalton Trans. 39, 4672–4676 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Inglis, R., Milios, C. J., Jones, L. F., Piligkos, S. & Brechin, E. K. Twisted molecular magnets. Chem. Commun. 48, 181–190 (2012).

    Article  CAS  Google Scholar 

  10. Moushi, E. E. et al. Inducing single-molecule magnetism in a family of loop-of-loops aggregates: heterometallic Mn40Na4 clusters and the homometallic Mn44 analogue. J. Am. Chem. Soc. 132, 16146–16155 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Murrie, M. Cobalt(II) single-molecule magnets. Chem. Soc. Rev. 39, 1986–1995 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, X-Y., Avendano, C. & Dunbar, K. R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 40, 3213–3238 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Krebs, B., Stiller, S., Tytko, K. H. & Mehmke, J. Structure and bonding in the high-molecular-weight isopolymolybdate ion, (Mo36O112(H2O)16)8− – the crystal structure of Na8(Mo36O112(H2O)16)·58H2O. Eur. J. Solid State Inorg. Chem. 28, 883–903 (1991).

    CAS  Google Scholar 

  14. Müller, A. et al. Rapid and simple isolation of the crystalline molybdenum-blue compounds with discrete and linked nanosized ring-shaped anions: Na15[MoVI126MoV28O462H14(H2O)70]0.5[MoVI124MoV28O457H14(H2O)68]0.5·ca.400H2O and Na22[MoVI118MoV28O442H14(H2O)58]·ca.250H2O. Z. Anorg. Allg. Chem. 625, 1187–1192 (1999).

    Article  Google Scholar 

  15. Müller, A., Krickemeyer, E., Bögge, H., Schmidtmann, M. & Peters, F. Organizational forms of matter: an inorganic super fullerene and Keplerate based on molybdenum oxide. Angew. Chem. Int. Ed. 37, 3359–3363 (1998).

    Article  Google Scholar 

  16. Müller, A., Beckmann, E., Bögge, H., Schmidtmann, M. & Dress, A. Inorganic chemistry goes protein size: a Mo368 nano-hedgehog initiating nanochemistry by symmetry breaking. Angew. Chem. Int. Ed. 41, 1162–1167 (2002).

    Article  Google Scholar 

  17. Inglis, R. et al. Enhancing SMM properties via axial distortion of MnIII3 clusters. Chem. Commun. 45, 5924–5926 (2008).

    Article  CAS  Google Scholar 

  18. Inglis, R. et al. Twisting, bending, stretching: strategies for making ferromagnetic [MnIII3] triangles. Dalton Trans. 42, 9157–9168 (2009).

    Article  CAS  Google Scholar 

  19. Inglis, R. et al. Attempting to understand (and control) the relationship between structure and magnetism in an extended family of Mn6 single-molecule magnets. Dalton Trans. 18, 3403–3412 (2009).

    Article  CAS  Google Scholar 

  20. Kozoni, C., Siczek, M., Lis, T., Brechin, E. K. & Milios, C. J. The first amino acid manganese cluster: a [MnIV2MnIII3] DL-valine cage. Dalton Trans. 42, 9117–9119 (2009).

    Article  CAS  Google Scholar 

  21. Levenspiel, O. Chemical Reaction Engineering (John Wiley, 1999).

    Google Scholar 

  22. Müller, A. et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)−: a water-soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000. Angew. Chem. Int. Ed. Engl. 34, 2122–2124 (1995).

    Article  Google Scholar 

  23. Müller, A., Meyer, J., Krickemeyer, E. & Diemann, E. Molybdenum blue: a 200 year old mystery unveiled. Angew. Chem. Int. Ed. Engl. 35, 1206–1208 (1996).

    Article  Google Scholar 

  24. Müller, A. et al. Thirty electrons ‘trapped’ in a spherical matrix: a molybdenum oxide-based nanostructured Keplerate reduced by 36 electrons. Angew. Chem. Int. Ed. 39, 1614–1616 (2000).

    Article  Google Scholar 

  25. Müller, A. et al. Drawing small cations into highly charged porous nanocontainers reveals ‘water’ assembly and related interaction problems. Angew. Chem. Int. Ed. 42, 2085–2090 (2003).

    Article  CAS  Google Scholar 

  26. Henry, M., Bögge, H., Diemann, E. & Müller, A. Chameleon water: assemblies confined in nanocapsules. J. Mol. Liq. 118, 155–162 (2005).

    Article  CAS  Google Scholar 

  27. Rittner, W., Müller, A., Neumann, A., Bafher, W. & Sharma, R. C. Generation of the triangulo-group MoV-ETA-S2 in the condensation of [MoVIO2S2]2 to [MoVO2S2]2 . Angew. Chem. Int. Ed. Engl. 17, 530–531 (1979).

    Article  Google Scholar 

  28. Cadot, E., Salignac, B., Halut, S. & Sécheresse, F. [Mo12S12O12(OH)12(H2O)6]: a cyclic molecular cluster based on the [MO2S2O2]2+ building block. Angew. Chem. Int. Ed. 37, 611–612 (1998).

    Article  CAS  Google Scholar 

  29. Salignac, B., Riedel, S., Dolbecq, A., Sécheresse, F. & Cadot, E. ‘Wheeling templates’ in molecular oxothiomolybdate rings: syntheses, structures, and dynamics J. Am. Chem. Soc. 122, 10381–10389 (2000).

    Article  CAS  Google Scholar 

  30. Cadot, E., Salignac, B., Marrot, J., Dolbecq, A. & Sécheresse, F. [Mo10S10O10(OH)10(H2O)5]: a novel decameric molecular ring showing supramolecular properties. Chem. Commun. 261–262 (2000).

  31. Cadot, E., Salignac, B., Halut, S. & Sécheresse, F. [Mo12S12O12(OH)12(H2O)6]: a cyclic molecular cluster based on the [Mo2S2O2]2+ building block. Angew. Chem. Int. Ed. 37, 611–613 (1998).

    Article  CAS  Google Scholar 

  32. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  33. Evangelisti, M., Luis, F., de Jongh, L. J. & Affronte, M. Magnetothermal properties of molecule-based materials. J. Mater. Chem. 16, 2534–2549 (2006).

    Article  CAS  Google Scholar 

  34. Zheng, Y-Z., Evangelisti, M., Tuna, F. & Winpenny, R. E. P. Co–Ln mixed-metal phosphonate grids and cages as molecular magnetic refrigerants. J. Am. Chem. Soc. 134, 1057–1065 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Lehmann, J., Gaita-Arino, A., Coronado, E. & Loss, D. Spin qubits with electrically gated polyoxometalate molecules. Nature Nanotechnol. 2, 312–317 (2007).

    Article  CAS  Google Scholar 

  37. Karotsis, G. et al. [MnIII4LnIII4] calix[4]arene clusters as enhanced magnetic coolers and molecular magnets. J. Am. Chem. Soc. 132, 12983–12990 (2010).

    Article  CAS  Google Scholar 

  38. Lange, H. et al. A breakthrough method for the accurate addition of reagents in multi-step segmented flow processing. Chem. Sci. 2, 765–769 (2011).

    Article  CAS  Google Scholar 

  39. McMullen, J. P., Stone, M. T., Buchwald, S. L. & Jensen, K. F. An integrated microreactor system for self-optimization of a heck reaction: from micro- to mesoscale flow systems. Angew. Chem. Int. Ed. 49, 7076–7080 (2010).

    Article  CAS  Google Scholar 

  40. Parrott, A. J., Bourne, R. A., Akien, G. R., Irvine, D. J. & Poliakoff, M. Self-optimizing continuous reactions in supercritical carbon dioxide. Angew. Chem. Int. Ed. 50, 3788–3792 (2011).

    Article  CAS  Google Scholar 

  41. Rasheed, M. & Wirth, T. Intelligent microflow: development of self-optimizing reaction systems. Angew. Chem. Int. Ed. 50, 357–358 (2011).

    Article  CAS  Google Scholar 

  42. Miras, H. N. et al. Unveiling the transient template in the self assembly of a molecular oxide nano-wheel. Science 327, 72–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Miras, H. N., Richmond, C. J., Long, D-L. & Cronin, L. Solution-phase monitoring of the structural evolution of a molybdenum blue nanoring. J. Am. Chem. Soc. 134, 3816–3824 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council, WestCHEM, The Leverhulme Trust and the University of Glasgow. L.C. thanks the Royal Society/Wolfson Foundation for a merit award. H.N.M. thanks the Royal Society of Edinburgh and Marie Curie Actions for financial support. We also thank J. McIver for technical assistance in assembling the electronics and flow kit.

Author information

Authors and Affiliations

Authors

Contributions

L.C. conceived the overall idea and designed the flow system, including the control concept. L.C. and C.J.R. designed experiments, analysed data, prepared the figures and co-wrote the manuscript. H.N.M. helped with some of the flow-system design, provided advice and assisted with crystallography. A.R. applied and corroborated the syntheses and compound analysis. D.L. solved and checked the crystallographic data. C.J.R. and L.P. co-wrote the software interface used for the programmed pump control and C.M. helped in the verification of the interface. E.K.B and R.I. provided help with the synthesis of the Mn-based complexes. V.S. provided help with chemical engineering aspects and H.Z. helped with the synthesis of compound 6.

Corresponding author

Correspondence to Leroy Cronin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1113 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 32 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 102 kb)

Supplementary information

Crystallographic data for compound 9 (CIF 54 kb)

Supplementary information

Script for pumping sequences (TXT 37 kb)

Supplementary information

Script for pumping sequence for Mo96 cluster (TXT 8 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richmond, C., Miras, H., de la Oliva, A. et al. A flow-system array for the discovery and scale up of inorganic clusters. Nature Chem 4, 1037–1043 (2012). https://doi.org/10.1038/nchem.1489

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing