Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host

Abstract

Understanding the mechanism by which porous solids trap harmful gases such as CO2 and SO2 is essential for the design of new materials for their selective removal. Materials functionalized with amine groups dominate this field, largely because of their potential to form carbamates through H2N(δ)···C(δ+)O2 interactions, thereby trapping CO2 covalently. However, the use of these materials is energy-intensive, with significant environmental impact. Here, we report a non-amine-containing porous solid (NOTT-300) in which hydroxyl groups within pores bind CO2 and SO2 selectively. In situ powder X-ray diffraction and inelastic neutron scattering studies, combined with modelling, reveal that hydroxyl groups bind CO2 and SO2 through the formation of O=C(S)=O(δ)···H(δ+)–O hydrogen bonds, which are reinforced by weak supramolecular interactions with C–H atoms on the aromatic rings of the framework. This offers the potential for the application of new ‘easy-on/easy-off’ capture systems for CO2 and SO2 that carry fewer economic and environmental penalties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of gas-binding interactions in amine-functionalized materials and in hydroxyl-functionalized NOTT-300.
Figure 2: Structure of NOTT-300-solvate.
Figure 3: Gas sorption isotherms and variation of thermodynamic parameters Qst and ΔS as a function of CO2 uptake in NOTT-300.
Figure 4: In situ INS and simulated CO2 positions in the pore channel of NOTT-300.
Figure 5: In situ synchrotron X-ray powder diffraction patterns and refined SO2 positions in the pore channel of NOTT-300.
Figure 6: In situ INS and simulated SO2 positions in the pore channel of NOTT-300.

Similar content being viewed by others

References

  1. Keith, D. W. Why capture CO2 from the atmosphere? Science 325, 1654–1655 (2009).

    Article  CAS  Google Scholar 

  2. Villiers, C., Dognon, J. P., Pollet, R., Thuery, P. & Ephritikhine, M. An isolated CO2 adduct of a nitrogen base: crystal and electronic structures. Angew. Chem. Int. Ed. 49, 3465–3468 (2010).

    Article  CAS  Google Scholar 

  3. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    Article  CAS  Google Scholar 

  4. Long, J. R. & Yaghi, O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1201–1507 (2009).

    Article  Google Scholar 

  5. D'Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    Article  CAS  Google Scholar 

  6. Wang, B., Coté, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–212 (2008).

    Article  CAS  Google Scholar 

  7. Li, Q. W. et al. Docking in metal-organic frameworks. Science 325, 855–859 (2009).

    Article  CAS  Google Scholar 

  8. Lin, X., Champness, N. R. & Schröder, M. Hydrogen, methane and carbon dioxide adsorption in metal-organic framework materials. Top. Curr. Chem. 293, 35–76 (2010).

    Article  CAS  Google Scholar 

  9. Sumida, K. et al. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  Google Scholar 

  10. Matsuda, R. et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 436, 238–241 (2005).

    Article  CAS  Google Scholar 

  11. Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    Article  CAS  Google Scholar 

  12. Dawson, R., Adams, D. J. & Cooper, A. I. Chemical tuning of CO2 sorption in robust nanoporous organic polymers. Chem. Sci. 2, 1173–1177 (2011).

    Article  CAS  Google Scholar 

  13. Vaidhyanathan, R. et al. Direct observation and quantification of CO2 binding within an amine-functionalized nanoporous solid. Science 330, 650–653 (2010).

    Article  CAS  Google Scholar 

  14. Zhang, J-P. & Chen, X-M. Optimised acetylene/carbon dioxide sorption in a dynamic porous crystal. J. Am. Chem. Soc. 131, 5516–5521 (2009).

    Article  CAS  Google Scholar 

  15. Takamizawa, S. et al. Crystal transformation and host molecular motions in CO2 adsorption process of a metal benzoate pyrazine (MII = Rh, Cu). J. Am. Chem. Soc. 132, 3783–3792 (2010).

    Article  CAS  Google Scholar 

  16. Yang, S. et al. Pore with gate: modulating hydrogen storage in metal-organic framework materials via cation exchange. Faraday Discuss. 151, 19–36 (2011).

    Article  CAS  Google Scholar 

  17. Ibarra, I. et al. Near critical water, a cleaner solvent for the synthesis of a metal-organic framework. Green Chem. 14, 117–122 (2012).

    Article  CAS  Google Scholar 

  18. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  19. Yan, Y. et al. A mesoporous metal-organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. Chem. Commun. 47, 9995–9997 (2009).

    Article  Google Scholar 

  20. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  21. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 65, 148–155 (2009).

    Article  CAS  Google Scholar 

  22. Demessence, A., D'Alessandro, D. M., Foo, M. L. & Long, J. R. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine. J. Am. Chem. Soc. 131, 8784–8785 (2009).

    Article  CAS  Google Scholar 

  23. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    Article  CAS  Google Scholar 

  24. Ramirez-Cuesta, A. J. aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Comput. Phys. Commun. 157, 226–238 (2004).

    Article  CAS  Google Scholar 

  25. Mitchell, P. C. H., Parker, S. F., Ramirez-Cuesta, A. J. & Tomkinson, J. Vibrational Spectroscopy with Neutrons with Applications in Chemistry, Biology, Material Sciences and Catalysis (World Scientific, 2005).

    Book  Google Scholar 

  26. Chen, B. et al. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. J. Am. Chem. Soc. 130, 6411–6423 (2008).

    Article  CAS  Google Scholar 

  27. Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).

    Article  CAS  Google Scholar 

  28. Thompson, S. P. et al. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction. Rev. Sci. Instrum. 80, 075107 (2009).

    Article  CAS  Google Scholar 

  29. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  30. Palatinus, L. & Chapuis, G. Superflip—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 40, 786–790 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.Y. acknowledges receipt of a Leverhulme Trust Early Career Research Fellowship, and M.S. the receipt of an ERC Advanced Grant and EPSRC Programme Grant. The authors acknowledge funding from the EPSRC and the University of Nottingham, and are especially grateful to Diamond Light Source and ISIS Neutron Centre for access to Beamlines I11 and TOSCA, respectively. The authors thank the user support group at ISIS (C. Goodway and M. Kibble) for technical help at ISIS beamline TOSCA, M. Fray for help with TEM measurements, and K. Refson for discussions on DFT modelling. J.S. acknowledges support from the Swedish Research Council (VR).

Author information

Authors and Affiliations

Authors

Contributions

S.Y., D.P.A. and R.N. carried out syntheses of the MOF samples. J.S. and W.I.F.D. contributed to solution and refinement of the structures from PXRD data. S.Y. characterized the MOF samples and carried out measurements and analysis of adsorption isotherms. S.Y., A.J.B., C.C.T. and J.E.P. collected and analysed the synchrotron X-ray powder diffraction data. S.Y., S.K.C. and A.J.R.C. collected and analysed the neutron scattering data and carried out DFT modelling of the neutron scattering data. M.S. and S.Y. were responsible for the overall direction and design of the project and preparation of the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Sihai Yang or Martin Schröder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5020 kb)

Supplementary information

Fractional coordinates for compound NOTT-300-solvated (CIF 1 kb)

Supplementary information

Fractional coordinates for compound NOTT-300-3.2CO2 (CIF 1 kb)

Supplementary information

Fractional coordinates for compound NOTT-300-4SO2 (CIF 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Sun, J., Ramirez-Cuesta, A. et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nature Chem 4, 887–894 (2012). https://doi.org/10.1038/nchem.1457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing