Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity

Abstract

The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of various amyloid aggregates. Here, we introduce a family of robust β-sheet macrocycles that can serve as a platform to display a variety of heptapeptide sequences from different amyloid proteins. We have tailored these amyloid β-sheet mimics (ABSMs) to antagonize the aggregation of various amyloid proteins, thereby reducing the toxicity of amyloid aggregates. We describe the structures and inhibitory properties of ABSMs containing amyloidogenic peptides from the amyloid-β peptide associated with Alzheimer's disease, β2-microglobulin associated with dialysis-related amyloidosis, α-synuclein associated with Parkinson's disease, islet amyloid polypeptide associated with type II diabetes, human and yeast prion proteins, and Tau, which forms neurofibrillary tangles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of ABSM 1.
Figure 2: X-ray crystallographic structure of ABSM 1r, which contains the heptapeptide sequence AIIGLMV (Aβ30–36).
Figure 3: Effect of ABSMs on inhibition of Aβ40, Aβ42, hβ2M and hαSyn1–100 aggregation monitored by thioflavin T fluorescence assays and TEM.
Figure 4: Effect of ABSM 1a on Aβ40 and Aβ42 toxicity towards PC-12 cells.
Figure 5: β-Sheet interactions of Aβ peptides and ABSM 1a.

Similar content being viewed by others

References

  1. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  2. Aguzzi, A. & O'Connor, T. Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nature Rev. Drug. Discov. 9, 237–248 (2010).

    Article  CAS  Google Scholar 

  3. Bartolini, M. & Andrisano, V. Strategies for the inhibition of protein aggregation in human diseases. ChemBioChem 11, 1018–1035 (2010).

    Article  CAS  Google Scholar 

  4. Greenwald, J. & Riek, R. Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260 (2010).

    Article  CAS  Google Scholar 

  5. Tycko, R. Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62, 279–299 (2011).

    Article  CAS  Google Scholar 

  6. Eichner, T. & Radford, S. E. A diversity of assembly mechanisms of a generic amyloid fold. Mol. Cell 43, 8–18 (2011).

    Article  CAS  Google Scholar 

  7. Lopez de la Paz, M. & Serrano, L. Sequence determinants of amyloid fibril formation. Proc. Natl Acad. Sci. USA 101, 87–92 (2004).

    Article  CAS  Google Scholar 

  8. Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc. Natl Acad. Sci. USA 107, 3487–3492 (2010).

    Article  CAS  Google Scholar 

  9. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  10. Sawaya, M. R. et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

  11. Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc. Natl Acad. Sci. USA 97, 571–576 (2000).

    Article  CAS  Google Scholar 

  12. Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T. & Lansbury, P. T. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418, 291–291 (2002).

    Article  CAS  Google Scholar 

  13. Chimon, S. et al. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nature Struct. Mol. Biol. 14, 1157–1164 (2007).

    Article  CAS  Google Scholar 

  14. Bernstein, S. L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nature Chem. 1, 326–331 (2009).

    Article  CAS  Google Scholar 

  15. Ono, K., Condron, M. M. & Teplow D. B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proc. Natl Acad. Sci. USA 106, 14745–14750 (2009).

    Article  CAS  Google Scholar 

  16. Woods, R. J. et al. Cyclic modular β-sheets. J. Am. Chem. Soc. 129, 2548–2558 (2007).

    Article  CAS  Google Scholar 

  17. Liu, C. et al. Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic β-sheet mimics. J. Am. Chem. Soc. 133, 6736–6744 (2011).

    Article  CAS  Google Scholar 

  18. Zheng, J. et al. Macrocyclic β-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide. J. Am. Chem. Soc. 133, 3144–3157 (2011).

    Article  CAS  Google Scholar 

  19. Gellman, S. H. Minimal model systems for β-sheet secondary structure in proteins. Curr. Opin. Chem. Biol. 2, 717–725 (1998).

    Article  CAS  Google Scholar 

  20. Nowick, J. S. et al. An unnatural amino acid that mimics a tripeptide β-strand and forms β-sheetlike hydrogen-bonded dimers. J. Am. Chem. Soc. 122, 7654–7661 (2000).

    Article  CAS  Google Scholar 

  21. Nowick, J. S. & Brower, J. O. A new turn structure for the formation of β-hairpins in peptides. J. Am. Chem. Soc. 125, 876–877 (2003).

    Article  CAS  Google Scholar 

  22. Finder, V. H. & Glockshuber, R. Amyloid-β aggregation. Neurodegen. Dis. 4, 13–27 (2007).

    Article  CAS  Google Scholar 

  23. Walsh, P., Simonetti, K. & Sharpe, S. Core structure of amyloid fibrils formed by residues 106–126 of the human prion protein. Structure 17, 417–426 (2009).

    Article  CAS  Google Scholar 

  24. Friedhoff, P., von Bergen, M., Mandelkow, E-M., Davies, P. & Mandelkow, E. A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc. Natl Acad. Sci. USA 95, 15712–15717 (1998).

    Article  CAS  Google Scholar 

  25. Platt, G. W., Routledge, K. E., Homans, S. W. & Radford, S. E. Fibril growth kinetics reveal a region of β2-microglobulin important for nucleation and elongation of aggregation. J. Mol. Biol. 378, 251–263 (2008).

    Article  CAS  Google Scholar 

  26. Vilar, M. et al. The fold of α-synuclein fibrils. Proc. Natl Acad. Sci. USA 105, 8637–8642 (2008).

    Article  CAS  Google Scholar 

  27. Luca, S., Yau, W-M., Leapman, R. & Tycko, R. Peptide conformation and supramolecular organization in amylin fibrils: constraints from solid-state NMR. Biochemistry 46, 13505–13522 (2007).

    Article  CAS  Google Scholar 

  28. Cheng, P-N. & Nowick, J. S. Giant macrolactams based on β-sheet peptides. J. Org. Chem. 76, 3166–3173 (2011).

    Article  CAS  Google Scholar 

  29. Yan, L-M., Velkova, A., Tatarek-Nossol, M., Andreetto, E. & Kapurniotu, A. IAPP mimic blocks Aβ cytotoxic self-assembly: cross-suppression of amyloid toxicity of Aβ and IAPP suggests a molecular link between Alzheimer's disease and type II diabetes. Angew. Chem. Int. Ed. 46, 1246–1252 (2007).

    Article  CAS  Google Scholar 

  30. Seeliger, J. et al. Cross-amyloid interaction of Aβ and IAPP at lipid membranes. Angew. Chem. Int. Ed. 51, 679–683 (2012).

    Article  CAS  Google Scholar 

  31. Ma, B. & Nussinov, R. Selective molecular recognition in amyloid growth and transmission and cross-species barriers. J. Mol. Biol. 421, 172–184 (2012).

    Article  CAS  Google Scholar 

  32. Miller, Y., Ma, B. & Nussinov, R. Polymorphism in Alzheimer Aβ amyloid organization reflects conformational selection in a rugged energy landscape. Chem. Rev. 110, 4820–4838 (2010).

    Article  CAS  Google Scholar 

  33. Stains, C. I., Mondal, K. & Ghosh, I. Molecules that target beta-amyloid. ChemMedChem 2, 1674–1692 (2007).

    Article  CAS  Google Scholar 

  34. Sciarretta, K. L., Gordon, D. J. & Meredith, S. C. Peptide-based inhibitors of amyloid assembly. Methods Enzymol. 413, 273–312 (2006).

    Article  CAS  Google Scholar 

  35. Colletier, J-P. et al. Molecular basis for amyloid-β polymorphism. Proc. Natl Acad. Sci. USA 108, 16938–16943 (2011).

    Article  CAS  Google Scholar 

  36. Laganowsky, A. et al. Atomic view of a toxic amyloid small oligomer. Science 335, 1228–1231 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the NIH (5R01 GM049076, 1R01 GM097562 and 1R01 AG029430), the NSF (CHE-1112188, CHE-0750523 and MCB-0445429) and HHMI. The authors also thank A. Berk and D. Gou for help with tissue culture experiments, and S. Blum for suggestions for Fig. 5a.

Author information

Authors and Affiliations

Authors

Contributions

P.-N.C., C.L., D.E. and J.S.N. designed the research. P.-N.C., C.L. and M.Z. performed the research. P.-N.C., C.L., M.Z., D.E. and J.S.N. analysed the data. P.-N.C., C.L., M.Z., D.E. and J.S.N. wrote the paper.

Corresponding authors

Correspondence to David Eisenberg or James S. Nowick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 15430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, PN., Liu, C., Zhao, M. et al. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nature Chem 4, 927–933 (2012). https://doi.org/10.1038/nchem.1433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing