Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain

Abstract

One strategy to improve solar-cell efficiency is to generate two excited electrons from just one photon through singlet fission, which is the conversion of a singlet (S1) into two triplet (T1) excitons. For efficient singlet fission it is believed that the cumulative energy of the triplet states should be no more than that of S1. However, molecular analogues that satisfy this energetic requirement do not show appreciable singlet fission, whereas crystalline tetracene displays endothermic singlet fission with near-unity quantum yield. Here we probe singlet fission in tetracene by directly following the intermediate multiexciton (ME) state. The ME state is isoenergetic with 2 × T1, but fission is not activated thermally. Rather, an S1 ME superposition formed through a quantum-coherent process allows access to the higher-energy ME. We attribute entropic gain in crystalline tetracene as the driving force for the subsequent decay of S1 ME into 2 × T1, which leads to a high singlet-fission yield.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TR-2PPE spectra reveal the near-concurrent rise in singlet and ME populations.
Figure 2: TR-2PPE spectra at a pump photon energy of 2.32 eV for pump-probe delay times up to 250 ps.
Figure 3: TR-2PPE spectra reveal the coherent coupling between a hot ME state and a hot singlet state.
Figure 4: The absence of singlet-fission dynamics on sample temperatures between 176 and 248 K.

Similar content being viewed by others

References

  1. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of pn junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  CAS  Google Scholar 

  2. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  Google Scholar 

  3. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    Article  CAS  Google Scholar 

  4. Paci, I. et al. Singlet fission for dye-sensitized solar cells: can a suitable sensitizer be found? J. Am. Chem. Soc. 128, 16546–16553 (2006).

    Article  CAS  Google Scholar 

  5. Jadhav, P. J., Mohanty, A., Sussman, J., Lee, J. & Baldo, M. A. Singlet exciton fission in nanostructured organic solar cells. Nano Lett. 11, 1495–1498 (2011).

    Article  CAS  Google Scholar 

  6. Hong, Z. R. et al. Antenna effects and improved efficiency in multiple heterojunction photovoltaic cells based on pentacene, zinc phthalocyanine, and C60 . J. Appl. Phys. 106, 064511 (2009).

    Article  Google Scholar 

  7. Lee, J., Jadhav, P. & Baldo, M. A. High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 033301 (2009).

    Article  Google Scholar 

  8. Yoo, S., Domercq, B. & Kippelen, B. Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions. Appl. Phys. Lett. 85, 5427–5429 (2004).

    Article  CAS  Google Scholar 

  9. Rao, A. et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 12698–12703 (2010).

    Article  CAS  Google Scholar 

  10. Johnson, J. C., Nozik, A. J. & Michl, J. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132, 16302–16303 (2010).

    Article  CAS  Google Scholar 

  11. Wang, C. & Tauber, M. J. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132, 13988–13991 (2010).

    Article  CAS  Google Scholar 

  12. Johnson, R. C. & Merrifield, R. E. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1, 896–902 (1970).

    Article  Google Scholar 

  13. Suna, A. Kinematics of exciton–exciton annihilation in molecular crystals. Phys. Rev. B 1, 1716–1739 (1970).

    Article  Google Scholar 

  14. Groff, R. P., Avakian, P. & Merrifield, R. E. Coexistence of exciton fission and fusion in tetracene crystals. Phys. Rev. B 1, 815–817 (1970).

    Article  Google Scholar 

  15. Greyson, E. C., Vura-Weis, J., Michl, J. & Ratner, M. A. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114, 14168–14177 (2010).

    Article  CAS  Google Scholar 

  16. Zimmerman, P. M., Zhang, Z. & Musgrave, C. B. Singlet fission in pentacene through multi-exciton quantum states. Nature Chem. 2, 648–652 (2010).

    Article  CAS  Google Scholar 

  17. Kuhlman, T. S., Kongsted, J., Mikkelsen, K. V., Møller, K. B. & Sølling, T. I. Interpretation of the ultrafast photoinduced processes in pentacene thin films. J. Am. Chem. Soc. 132, 3431–3439 (2010).

    Article  CAS  Google Scholar 

  18. Chan, W-L. et al. Observing the multi-exciton state in singlet fission and ensuing ultrafast multi-electron transfer. Science 334, 1543–1547 (2011).

    Article  Google Scholar 

  19. Burdett, J. J., Müller, A. M., Gosztola, D. & Bardeen, C. J. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133, 144506 (2010).

    Article  Google Scholar 

  20. Tomkiewicz, Y., Groff, R. P. & Avakian, P. Spectroscopic approach to energetics of excition fission and fusion in tetracene crystals. J. Chem. Phys. 54, 4504–4507 (1971).

    Article  CAS  Google Scholar 

  21. Jaeckel, B., Lim, T., Klein, A., Jaegermann, W. & Parkinson, B. A. Deposition of tetracene on GaSe passivated Si(111). Langmuir 23, 4856–4861 (2007).

    Article  CAS  Google Scholar 

  22. Thorsmølle, V. K. et al. Morphology effectively controls singlet–triplet exciton relaxation and charge transport in organic semiconductors. Phys. Rev. Lett. 102, 017401 (2009).

    Article  Google Scholar 

  23. Shabaev, A., Efros, Al. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article  CAS  Google Scholar 

  24. Witzel, W. M., Shabaev, A., Hellberg, C. S., Jacobs, V. L. & Efros, A. L. Quantum simulation of multiple-exciton generation in a nanocrystal by a single photon. Phys. Rev. Lett. 105, 137401 (2010).

    Article  Google Scholar 

  25. Yamagata, H. et al. The nature of singlet exciton in oligoacene molecular crystals. J. Chem. Phys. 134, 204703 (2011).

    Article  CAS  Google Scholar 

  26. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    Article  CAS  Google Scholar 

  27. Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    Article  CAS  Google Scholar 

  28. Nijegorodov, N., Ramachandran, V. & Winkoun, D. P. The dependence of the absorption and fluorescence parameters, the intersystem crossing and internal conversion rate constants on the number of rings in polyacene molecules. Spectrochim. Acta A 53, 1813–1824 (1997).

    Article  Google Scholar 

  29. Zimmerman, P. M., Bell, F., Casanova, D & Head-Gordon, M. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets. J. Am. Chem. Soc. 133, 19944–19952 (2011).

    Article  CAS  Google Scholar 

  30. Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Article  CAS  Google Scholar 

  31. Panitchayangkoona, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    Article  Google Scholar 

  32. Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–648 (2010).

    Article  CAS  Google Scholar 

  33. Kazzaz, A. A. & Zahlan, A. B. Temperature dependence of crystalline tetracene fluorescence. J. Phys. Chem. 48, 1242–1245 (1968).

    Article  CAS  Google Scholar 

  34. Swenberg, C. E. & Stacy, W. T. Biomolecular radiationless transitions in crystalline tetracene. Chem. Phys. Lett. 2, 327–3328 (1968).

    Article  CAS  Google Scholar 

  35. Geacintov, N., Pope, M. & Vogel, F. Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys. Rev. Lett. 22, 593–596 (1969).

    Article  CAS  Google Scholar 

  36. Burdett, J. J., Gosztola, D. & Bardeen, C. J. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135, 214508 (2011).

    Article  Google Scholar 

  37. Clarke, T. M. & Durrant, J. R. Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010).

    Article  CAS  Google Scholar 

  38. Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Chemical Kinetics and Dynamics 308–401 (Prentice Hall, 1989).

  39. Lim, S-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107401 (2004).

    Article  Google Scholar 

  40. Vaubel, G. & Baessler, H. Diffusion of singlet excitons in tetracene crystals. Mol. Cryst. Liq. Cryst. 12, 47–56 (1970).

    Article  CAS  Google Scholar 

  41. Robertson, J. M., Sinclair, V. C. & Trother, J. The crystal and molecular structure of tetracene. Acta Cryst. 14, 697–704 (1961).

    Article  CAS  Google Scholar 

  42. Müller, A. M., Avlasevich, Y. S., Schoeller, W. W., Müller, K. & Bardeen, C. J. Exciton fission and fusion in bis(tetracene) molecules with covalent linker structures. J. Am. Chem. Soc. 129, 14240–14250 (2007).

    Article  Google Scholar 

  43. Dougherty, D. B. et al. Striped domains at the pentacene:C60 interface. Appl. Phys. Lett. 94, 023103 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported until 30 June 2011 by the US National Science Foundation under grant DMR-0946346; all experimental measurements were carried out during this time period. The work was continued after 30 June 2011 based on work supported as part of the program ‘Center for Re-Defining Photovoltaic Efficiency Through Molecule Scale Control’, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001085. All theoretical developments were achieved during the period after 30 June 2011. M.L. acknowledges SFB616 and the Leopoldina Fellowship Program LPDS 2009-41 that made his visit to the Zhu group at the University of Texas at Austin possible. We thank R. Wyatt, F. Spano, Al. Efros and A. Shabaev for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W-L.C. and X-Y.Z. conceived and designed the experiments, W-L.C. and M.L. performed the experiments and W-L. C. and X-Y.Z. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to X-Y. Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, WL., Ligges, M. & Zhu, XY. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chem 4, 840–845 (2012). https://doi.org/10.1038/nchem.1436

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1436

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing