Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualization of hierarchically structured zeolite bodies from macro to nano length scales

Abstract

A major challenge in the implementation of laboratory-designed catalysts is the scale-up into technically relevant forms. Advanced characterization is essential to understand and optimize catalyst assembly and function in industrial reactors. This Article presents an integrated approach to visualizing millimetre-sized extrudates and granules of a hierarchical MFI-type zeolite, displaying trimodal networks of micropores (0.56 nm), intracrystalline mesopores (10 nm) and macropores (200–300 nm). As exemplified for the conversion of methanol to olefins, the hierarchical zeolite yields a superior performance compared to its conventional analogue. The combination of dedicated specimen preparation with state-of-the-art optical, X-ray and electron-based microscopic and tomographic techniques proves a powerful methodology to reveal otherwise inaccessible information regarding structural organization over the whole range of length scales. It is expected that these tools will play a crucial role in the rationalization of scale-up principles in catalyst development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multidimensionality of the catalytic process.
Figure 2: Multiporosity levels in the ZSM-5 bodies.
Figure 3: Catalytic performance of ZSM-5 bodies in the conversion of methanol to olefins (MTO).
Figure 4: Integrated approach to the visualization of a hierarchical zeolite body from macro to nano length scales.
Figure 5: Internal structure of a hierarchical zeolite body by high-resolution SRXTM and FIB–SEM.
Figure 6: Detailed analysis of the zeolite phase.

Similar content being viewed by others

References

  1. Louis, B., Laugel, G., Pale, P. & Pereira, M. M. Rational design of microporous and mesoporous solids for catalysis: from the molecule to the reactor. ChemCatChem 3, 1263–1272 (2011).

    Article  CAS  Google Scholar 

  2. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).

    Article  CAS  Google Scholar 

  3. Davis, M. E. Ordered porous materials for emerging applications. Nature 417, 813–821 (2002).

    Article  CAS  Google Scholar 

  4. Na, K. et al. Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328–332 (2011).

    Article  CAS  Google Scholar 

  5. Boissiere, C., Grosso, D., Chaumonnot, A., Nicole, L. & Sanchez, C. Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv. Mater. 23, 599–623 (2011).

    Article  CAS  Google Scholar 

  6. Stiles, A. B. & Koch, T. A. in Catalyst Manufacture Ch.1 (Marcel Dekker, 1995).

  7. Schüth, F. & Hesse, M. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Weitkamp, J.) Ch. 2.5.2, 676–699 (Wiley-VCH, 2008).

  8. Espinosa-Alonso, L, Beale, A. M. & Weckhuysen, B. Profiling physicochemical changes within catalyst bodies during preparation: new insights from invasive and noninvasive microspectroscopic studies. Acc. Chem. Res. 43, 1279–1288 (2010).

    Article  CAS  Google Scholar 

  9. Bergwerff, J. A., et al. Spatially resolved Raman and UV–visible–NIR spectroscopy on the preparation of supported catalyst bodies: controlling the formation of H2PMo11CoO405− inside Al2O3 pellets during impregnation. Chem. Eur. J. 11, 4591–4601 (2005).

    Article  CAS  Google Scholar 

  10. Espinosa-Alonso, L. et al. Magnetic resonance imaging studies on catalyst impregnation processes: discriminating metal ion complexes within millimeter-sized γ-Al2O3 catalyst bodies. J. Am. Chem. Soc. 131, 6525–6534 (2009).

    Article  CAS  Google Scholar 

  11. Jacques, S. D. M. et al. Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution. Angew. Chem. Int. Ed. 50, 10148–10152 (2011).

    Article  CAS  Google Scholar 

  12. O'Brien, M. et al. Active phase evolution in single Ni/Al2O3 methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT. Chem. Sci. 3, 509–523 (2012).

    Article  CAS  Google Scholar 

  13. Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H. & Groen, J. C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008).

    Article  Google Scholar 

  14. Choi, M. et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Mater. 5, 718–723 (2006).

    Article  CAS  Google Scholar 

  15. de Jong, K. P. et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts, Angew. Chem. Int. Ed. 49, 10074–10078 (2010).

    Article  CAS  Google Scholar 

  16. Valtchev, V. et al. High energy ion irradiation-induced ordered macropores in zeolite crystals. J. Am. Chem. Soc. 133, 18950–18956 (2011).

    Article  CAS  Google Scholar 

  17. Jiang, J. X. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333, 1131–1134 (2011).

    Article  CAS  Google Scholar 

  18. Pérez-Ramírez, J. et al. Expanding the horizons of hierarchical zeolites: beyond laboratory curiosity towards industrial realization. ChemCatChem 3, 1731–1734 (2011).

    Article  Google Scholar 

  19. Groen, J. C., Peffer, L. A. A. & Pérez-Ramírez, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 60, 1–17 (2003).

    Article  CAS  Google Scholar 

  20. Zečević, J., Gommes, C. J., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Mesoporosity of zeolite Y: quantitative three-dimensional study by image analysis of electron tomograms. Angew. Chem. Int. Ed. 51, 4213–4217 (2012).

    Article  Google Scholar 

  21. Groen, J. C. et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J. Am. Chem. Soc. 127, 10792–10793 (2005).

    Article  CAS  Google Scholar 

  22. Friedrich, H., de Jongh, P. E., Verkleij, A. J. & de Jong, K. P. Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109, 1613–1629 (2009).

    Article  CAS  Google Scholar 

  23. Bjørgen, M. et al. Methanol to gasoline over zeolite H-ZSM-5: improved catalyst performance by treatment with NaOH. Appl. Catal. A 345, 43–50 (2008).

    Article  Google Scholar 

  24. Kim, J., Choi, M. & Ryoo, R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. J. Catal. 269, 219–228 (2010).

    Article  CAS  Google Scholar 

  25. Roeffaers, M. B. J. et al. Super-resolution reactivity mapping of nanostructures catalyst particles. Angew. Chem. Int. Ed. 48, 9285–9289 (2009).

    Article  CAS  Google Scholar 

  26. De Cremer, G., Sels, B., De Vos, D. E., Hofkens, J. & Roaeffaers, M. B. J. Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39, 4703–4717 (2010).

    Article  CAS  Google Scholar 

  27. Buurmans, I. L. C. et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. Nature Chem. 3, 862–867 (2011).

    Article  CAS  Google Scholar 

  28. Epting, W. K., Gelb, J. & Lister, S. Resolving the three-dimensional microstructure of polymer electrolyte fuel cell electrodes using nanometer-scale X-ray computed tomography. Adv. Funct. Mater. 22, 555–560 (2012).

    Article  CAS  Google Scholar 

  29. Wilson, J. R. et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nature Mater. 5, 541–544 (2006).

    Article  CAS  Google Scholar 

  30. Hintermuller, C., Marone, F., Isenegger, A. & Stampanoni, M. Image processing pipeline for synchrotron-radiation-based tomographic microscopy. J. Synchrotron Rad. 17, 550–559 (2010).

    Article  CAS  Google Scholar 

  31. Stampanoni, M. et al. Phase-contrast tomography at the nanoscale using hard X-rays. Phys. Rev. B 81, 140105 (2010).

    Article  Google Scholar 

  32. Karwacki, L. et al. Architecture-dependent distribution of mesopores in steamed zeolite crystals as visualized by FIB-SEM tomography. Angew. Chem. Int. Ed. 50, 1294–1298 (2011).

    Article  CAS  Google Scholar 

  33. Anderson, M. W. et al. Modern microscopy methods for the structural study of porous materials. Chem. Commun. 907–916 (2004).

  34. Yuan, P. et al. Extensive inspection of unconventional mesoporous silica at all length-scales. Chem. Mater. 23, 229–238 (2011).

    Article  CAS  Google Scholar 

  35. Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nature Nanotech. 5, 506–510 (2010).

    Article  CAS  Google Scholar 

  36. Midgley, P. A. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nature Mater. 8, 271–280 (2009).

    Article  CAS  Google Scholar 

  37. Gommes, et al. Quantitative characterization of pore corrugation in ordered mesoporous materials using image analysis of electron tomography. Chem. Mater. 21, 1311–1317 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Swiss National Science Foundation (project no. 200021-134572). The authors thank N. Marti (Zeochem AG) for assistance with zeolite synthesis and shaping, and the TOMCAT beamline team (Swiss Light Source), in particular R. Mokso, for measurement support. Thanks also go to the Electron Microscopy Center ETH Zürich (EMEZ), and especially R. Wepf, E. Müller, M. Günthert, M. Lucas and A.G. Bittermann, for help with specimen preparation for visualization studies. Micromeritics Instrument Corporation is acknowledged for collaboration with respect to porosity analysis, and BASF SE for testing the zeolite extrudates in MTO.

Author information

Authors and Affiliations

Authors

Contributions

J.P.R. conceived and coordinated all stages of this research. N.M. and S.M. contributed equally to sample preparation and characterization. K.K. performed all FIB-SEM experiments. J.P.R., S.M. and N.M. wrote the manuscript.

Corresponding author

Correspondence to Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 903 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 8025 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 22996 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 13315 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, S., Michels, NL., Kunze, K. et al. Visualization of hierarchically structured zeolite bodies from macro to nano length scales. Nature Chem 4, 825–831 (2012). https://doi.org/10.1038/nchem.1403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1403

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing