Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading

Abstract

Virus-like particles (VLPs) have emerged as important and versatile architectures for chemical manipulation in the development of functional hybrid nanostructures. Here we demonstrate a successful site-selective initiation of atom-transfer radical polymerization reactions to form an addressable polymer constrained within the interior cavity of a VLP. Potentially, this protein–polymer hybrid of P22 and cross-linked poly(2-aminoethyl methacrylate) could be useful as a new high-density delivery vehicle for the encapsulation and delivery of small-molecule cargos. In particular, the encapsulated polymer can act as a scaffold for the attachment of small functional molecules, such as fluorescein dye or the magnetic resonance imaging (MRI) contrast agent Gd-diethylenetriaminepentacetate, through reactions with its pendant primary amine groups. Using this approach, a significant increase in the labelling density of the VLP, compared to that of previous modifications of VLPs, can be achieved. These results highlight the use of multimeric protein–polymer conjugates for their potential utility in the development of VLP-based MRI contrast agents with the possibility of loading other cargos.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the internally initiated ATRP polymerization within the P22 VLP.
Figure 2: Structural model of the expanded morphology of the P22 capsid that shows the location of the S39C mutation.
Figure 3: Characterization of the P22S39C mutant to verify morphological transformation.
Figure 4: Size and morphological characterization of the P22S39C-xAEMA composite and P22S39C-int.
Figure 5: Molecular weight increase as a result of polymerization, monitored by MALS.
Figure 6: Polymer formation and covalent modification with FITC was verified by native agarose gel electrophoresis.
Figure 7: Analysis of sample population homogeneity by analytical ultracentrifugation.

Similar content being viewed by others

References

  1. Grover, G. N. & Maynard, H. D. Protein–polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr. Opin. Chem. Biol. 14, 818–827 (2010).

    Article  CAS  Google Scholar 

  2. Krishna, O. D. & Kiick, K. L. Protein- and peptide-modified synthetic polymeric biomaterials. Biopolymers 94, 32–48 (2010).

    Article  CAS  Google Scholar 

  3. Thordarson, P., Le Droumaguet, B. & Velonia, K. Well-defined protein–polymer conjugates – synthesis and potential applications. Appl. Microbiol. Biotechnol. 73, 243–254 (2006).

    Article  CAS  Google Scholar 

  4. Depp, V., Alikhani, A., Grammer, V. & Lele, B. S. Native protein-initiated ATRP: a viable and potentially superior alternative to PEGylation for stabilizing biologics. Acta Biomater. 5, 560–569 (2009).

    Article  CAS  Google Scholar 

  5. Klok, H. A. Peptide/protein-synthetic polymer conjugates: quo vadis. Macromolecules 42, 7990–8000 (2009).

    Article  CAS  Google Scholar 

  6. Pokorski, J. K., Breitenkamp, K., Liepold, L. O., Qazi, S. & Finn, M. G. Functional virus-based polymer–protein nanoparticles by atom transfer radical polymerization. J. Am. Chem. Soc. 133, 9242–9245 (2011).

    Article  CAS  Google Scholar 

  7. Schlick, T. L., Ding, Z. B., Kovacs, E. W. & Francis, M. B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127, 3718–3723 (2005).

    Article  CAS  Google Scholar 

  8. de la Escosura, A., Nolte, R. J. M. & Cornelissen, J. Viruses and protein cages as nanocontainers and nanoreactors. J. Mater. Chem. 19, 2274–2278 (2009).

    Article  CAS  Google Scholar 

  9. Aniagyei, S. E., DuFort, C., Kao, C. C. & Dragnea, B. Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem. 18, 3763–3774 (2008).

    Article  CAS  Google Scholar 

  10. Dixit, S. K. et al. Quantum dot encapsulation in viral capsids. Nano Lett. 6, 1993–1999 (2006).

    Article  CAS  Google Scholar 

  11. Comellas-Aragones, M. et al. Controlled integration of polymers into viral capsids. Biomacromolecules 10, 3141–3147 (2009).

    Article  CAS  Google Scholar 

  12. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  13. Hu, Y. F., Zandi, R., Anavitarte, A., Knobler, C. M. & Gelbart, W. M. Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size. Biophys. J. 94, 1428–1436 (2008).

    Article  CAS  Google Scholar 

  14. Abe, S. et al. Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin. J. Am. Chem. Soc. 131, 6958–6960 (2009).

    Article  CAS  Google Scholar 

  15. Abedin, M. J., Liepold, L., Suci, P., Young, M. & Douglas, T. Synthesis of a cross-linked branched polymer network in the interior of a protein cage. J. Am. Chem. Soc. 131, 4346–4354 (2009).

    Article  CAS  Google Scholar 

  16. Liepold, L. O. et al. Supramolecular protein cage composite MR contrast agents with extremely efficient relaxivity properties. Nano Lett. 9, 4520–4526 (2009).

    Article  CAS  Google Scholar 

  17. Lucon, J. et al. A click chemistry based coordination polymer inside small heat shock protein. Chem. Commun. 46, 264–266 (2010).

    Article  CAS  Google Scholar 

  18. Earnshaw, W., Casjens, S. & Harrison, S. C. Assembly of head of bacteriophage P22: X-ray diffraction from heads, proheads and related structures. J. Mol. Biol. 104, 387–410 (1976).

    Article  CAS  Google Scholar 

  19. Parent, K. N. et al. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 18, 390–401 (2010).

    Article  CAS  Google Scholar 

  20. Teschke, C. M., McGough, A. & Thuman-Commike, P. A. Penton release from P22 heat-expanded capsids suggests importance of stabilizing penton–hexon interactions during capsid maturation. Biophys J 84, 2585–2592 (2003).

    Article  CAS  Google Scholar 

  21. Chen, D. H. et al. Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc. Natl Acad. Sci. USA 108, 1355–1360 (2011).

    Article  CAS  Google Scholar 

  22. Kang, S. et al. Implementation of P22 viral capsids as nanoplatforms. Biomacromolecules 11, 2804–2809 (2010).

    Article  CAS  Google Scholar 

  23. Tuma, R., Prevelige, P. E. & Thomas, G. J. Mechanism of capsid maturation in a double-stranded DNA virus. Proc. Natl Acad. Sci. USA 95, 9885–9890 (1998).

    Article  CAS  Google Scholar 

  24. Mantovani, G. et al. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: a suitable alternative to PEGylation chemistry. J. Am. Chem. Soc. 127, 2966–2973 (2005).

    Article  CAS  Google Scholar 

  25. Heredia, K. L. et al. In situ preparation of protein: ‘Smart’ polymer conjugates with retention of bioactivity. J. Am. Chem. Soc. 127, 16955–16960 (2005).

    Article  CAS  Google Scholar 

  26. Peeler, J. C. et al. Genetically encoded initiator for polymer growth from proteins. J. Am. Chem. Soc. 132, 13575–13577 (2010).

    Article  CAS  Google Scholar 

  27. Alidedeoglu, A. H., York, A. W., Rosado, D. A., McCormick, C. L. & Morgan, S. E. Bioconjugation of D-glucuronic acid sodium salt to well-defined primary amine-containing homopolymers and block copolymers. J. Polym. Sci. A 48, 3052–3061 (2010).

    Article  CAS  Google Scholar 

  28. Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R. & Hagins, W. A. Liposome–cell interaction: transfer and intracellular release of a trapped fluorescent marker. Science 195, 489–492 (1977).

    Article  CAS  Google Scholar 

  29. Chen, R. F. & Knutson, J. R. Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers. Anal. Biochem. 172, 61–77 (1988).

    Article  CAS  Google Scholar 

  30. Kang, S., Hawkridge, A. M., Johnson, K. L., Muddiman, D. C. & Prevelige, P. E. Identification of subunit–subunit interactions in bacteriophage P22 procapsids by chemical cross-linking and mass spectrometry. J. Proteome Res. 5, 370–377 (2006).

    Article  CAS  Google Scholar 

  31. Allen, M. et al. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn. Reson. Med. 54, 807–812 (2005).

    Article  CAS  Google Scholar 

  32. Liepold, L. et al. Viral capsids as MRI contrast agents. Magn. Reson. Med. 58, 871–879 (2007).

    Article  CAS  Google Scholar 

  33. Anderson, E. A. et al. Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. Nano Lett. 6, 1160–1164 (2006).

    Article  CAS  Google Scholar 

  34. Prasuhn, D. E., Yeh, R. M., Obenaus, A., Manchester, M. & Finn, M. G. Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide–alkyne cycloaddition. Chem. Commun. 1269–1271 (2007).

  35. Datta, A. et al. High relaxivity gadolinium hydroxypyridonate–viral capsid conjugates: nanosized MRI contrast agents. J. Am. Chem. Soc. 130, 2546–2552 (2008).

    Article  CAS  Google Scholar 

  36. Hooker, J. M., Datta, A., Botta, M., Raymond, K. N. & Francis, M. B. Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. Nano Lett. 7, 2207–2210 (2007).

    Article  CAS  Google Scholar 

  37. Dunand, F. A., Borel, A. & Helm, L. Gd(III) based MRI contrast agents: improved physical meaning in a combined analysis of EPR and NMR data? Inorg. Chem. Commun. 5, 811–815 (2002).

    Article  CAS  Google Scholar 

  38. Mulder, W. J. M., Strijkers, G. J., van Tilborg, G. A. F., Griffioen, A. W. & Nicolay, K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 19, 142–164 (2006).

    Article  CAS  Google Scholar 

  39. Ghaghada, K. B. et al. New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging. PLoS One 4, 1–7 (2009).

    Article  Google Scholar 

  40. Karfeld-Sulzer, L. S., Waters, E. A., Davis, N. E., Meade, T. J. & Barron, A. E. Multivalent protein polymer MRI contrast agents: controlling relaxivity via modulation of amino acid sequence. Biomacromolecules 11, 1429–1436 (2010).

    Article  CAS  Google Scholar 

  41. Schuhmanngiampieri, G., Schmittwillich, H., Frenzel, T., Press, W. R. & Weinmann, H. J. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest. Radiol. 26, 969–974 (1991).

    Article  CAS  Google Scholar 

  42. Ananta, J. S. et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T(1) contrast. Nature Nanotech. 5, 815–821 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by grants from the National Institutes of Health (R01-EB012027), the National Science Foundation (CBET-0709358) and a National Science Foundation Graduate Research Fellowship (J.L.). P.E.P. and G.J.B. were supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (DE-FG02-08ER46537).

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed and carried out the experiments. S.Q. characterized the samples by NMR and analysed the relaxivity data. M.U. and B.L.F. assisted in the initial characterization of the S39C mutant. G.J.B. characterized the samples by analytical ultracentrifugation. M.U. and T.D. assisted in the experimental design. J.L. and T.D. co-wrote the manuscript. P.E.P. and T.D. coordinated the project. All authors discussed the results.

Corresponding author

Correspondence to Trevor Douglas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucon, J., Qazi, S., Uchida, M. et al. Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. Nature Chem 4, 781–788 (2012). https://doi.org/10.1038/nchem.1442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1442

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research