Scalable enantioselective total synthesis of taxanes

Journal name:
Nature Chemistry
Year published:
Published online


Taxanes form a large family of terpenes comprising over 350 members, the most famous of which is Taxol (paclitaxel), a billion-dollar anticancer drug. Here, we describe the first practical and scalable synthetic entry to these natural products via a concise preparation of (+)-taxa-4(5),11(12)-dien-2-one, which has a suitable functional handle with which to access more oxidized members of its family. This route enables a gram-scale preparation of the ‘parent’ taxane—taxadiene—which is the largest quantity of this naturally occurring terpene ever isolated or prepared in pure form. The characteristic 6-8-6 tricyclic system of the taxane family, containing a bridgehead alkene, is forged via a vicinal difunctionalization/Diels–Alder strategy. Asymmetry is introduced by means of an enantioselective conjugate addition that forms an all-carbon quaternary centre, from which all other stereocentres are fixed through substrate control. This study lays a critical foundation for a planned access to minimally oxidized taxane analogues and a scalable laboratory preparation of Taxol itself.

At a glance


  1. Retrosynthetic analysis of Taxol (1) and other members of the taxane family.
    Figure 1: Retrosynthetic analysis of Taxol (1) and other members of the taxane family.

    a, Partial ‘oxidase phase pyramid’ for the retrosynthetic planning of the taxane family, including its key member, Taxol (1). b, Representative taxanes of varying oxidation states, sharing a C2-hydroxyl group. c, Synthetic design for ‘taxadienone’ (6) and reduction to generate taxadiene (7). Sites of oxidation installed onto taxadiene (7) are indicated in red. The ‘oxidation level’ of taxanes is defined as the number of C=C and C–O bonds installed onto the taxane carbon skeleton33.

  2. Enantioselective synthesis of key taxane 6.
    Figure 2: Enantioselective synthesis of key taxane 6.

    Conditions: a. 2,3-dimethyl-2-butene, CHBr3, potassium tert-butoxide, hexanes, 2 h; evaporate volatile materials, then N,N-dimethylaniline, 150 °C, 30 min (67%); a′. 3-ethoxy-2-cyclohexen-1-one, vinylmagnesium bromide, Et2O, 16 h (75%)45; b. 10, sec-butyllithium, Et2O, –78 °C, 15 min; then CuBr·SMe2, 30 min; then TMSCl, 5 min; then 11, 2 h; warm to room temperature, 8 h; then AcOH, 30 min; then 3 M HCl, 30 min (86%); c. CuTC (2 mol%), phosphoramidite 13 (4 mol%), Et2O, room temperature, 30 min; then 2.0 M Me3Al, enone 12, –30 °C, 24 h; then THF, TMSCl, 0 °C to room temperature, 8 h; then Et3N, Florisil, 2 h (89%, 93% e.e.); d. Gd(OTf)3 (10 mol%), acrolein, 1:10:4 H2O:EtOH:PhMe, 4 °C, 24 h; then evaporate volatiles, then Jones’ reagent, acetone, 10 min (85% over two steps, 2:1 d.r. at C3, inseparable mixture of diastereomers); e. BF3·OEt2, CH2Cl2, 0 °C, 6 h (47% 17 + 29% undesired diketone); f. 0.4 M KHMDS, PhNTf2, THF, 0 °C, 1 h; g. 1.2 M Me2Zn, Pd(PPh3)4 (5 mol %), THF, 0 °C to room temperature, 5 h (84% over two steps). TMSCl, trimethylsilyl chloride; CuTC, copper(I) thiophene-2-carboxylate; PhNTf2, N-phenylbis(trifluoromethanesulfonimide); KHMDS, potassium hexamethyldisilazide; Pd(PPh3)4, tetrakis(triphenylphosphine)palladium.

  3. Elaboration of (+)-taxadienone (6) to (+)-taxadiene (7) by a three-step reduction–deoxygenation sequence.
    Figure 3: Elaboration of (+)-taxadienone (6) to (+)-taxadiene (7) by a three-step reduction–deoxygenation sequence.

    Conditions: a. LiAlH4 (3.0 equiv.), Et2O, –78 °C to room temperature, 12 h (72 %); b. KH (7 equiv.), acetyl chloride (4 equiv.), THF, 60 °C, 18 h (89%); c. Na (18 equiv.), Et2O, HMPA, tBuOH, room temperature, 40 min (82%)48. Sites of oxidation installed onto taxadiene (7) are indicated in red.

  4. Initial synthetic investigations towards the synthesis of taxadienone (6).
    Figure 4: Initial synthetic investigations towards the synthesis of taxadienone (6).

    Disconnection A: an RCM approach would require many more steps in building the taxane framework. Disconnection B: the required aldol closure simply did not proceed. Disconnection C: a Shapiro reaction, followed by aldol and Diels–Alder reactions, is strategically similar to the successful synthetic route, but the stereochemistry at C8 could not be set stereoselectively. Disconnection D: conjugate addition at C8 to install the methyl unit did not proceed, because only the undesired conjugate addition onto C14 occurred.


21 compounds View all compounds
  1. Taxol®
    Compound 1 Taxol®
  2. 2-Debenzoyl-4,10-bis(deacetyl)-baccatin III
    Compound 2 2-Debenzoyl-4,10-bis(deacetyl)-baccatin III
  3. (1S,2S,3R,5S,7S,8S,9R,10R,13S)-1,2,5,7,9,10,13-Heptahydroxy-8,12,15,15-tetramethyl-4-methylene-tricyclo[,8]pentadec-11-ene
    Compound 3 (1S,2S,3R,5S,7S,8S,9R,10R,13S)-1,2,5,7,9,10,13-Heptahydroxy-8,12,15,15-tetramethyl-4-methylene-tricyclo[,8]pentadec-11-ene
  4. (1R,2R,3R,5S,8R,9R,10R,13S)-2,5,9,10,13-Pentahydroxy-8,12,15,15-tetramethyl-4-methylene-tricyclo[,8]pentadec-11-ene
    Compound 4 (1R,2R,3R,5S,8R,9R,10R,13S)-2,5,9,10,13-Pentahydroxy-8,12,15,15-tetramethyl-4-methylene-tricyclo[,8]pentadec-11-ene
  5. (1R,2R,3S,5S,8S,10S,13S)-2,5,10,13-Tetrahydroxy-8,12,15,15-tetramethyl-4-methylene-tricyclo[,8]pentadec-11-ene
    Compound 5 (1R,2R,3S,5S,8S,10S,13S)-2,5,10,13-Tetrahydroxy-8,12,15,15-tetramethyl-4-methylene-tricyclo[,8]pentadec-11-ene
  6. (+)-Taxa-4(5),11(12)-dien-2-one
    Compound (+)-6 (+)-Taxa-4(5),11(12)-dien-2-one
  7. (+)-Taxa-4(5),11(12)-diene
    Compound (+)-7 (+)-Taxa-4(5),11(12)-diene
  8. 2,3-Dimethylbut-2-ene
    Compound 8 2,3-Dimethylbut-2-ene
  9. 3-Ethoxycyclohex-2-enone
    Compound 9 3-Ethoxycyclohex-2-enone
  10. 3-Bromo-2,4-dimethylpenta-1,3-diene
    Compound 10 3-Bromo-2,4-dimethylpenta-1,3-diene
  11. 3-Vinylcyclohex-2-enone
    Compound 11 3-Vinylcyclohex-2-enone
  12. 3-[4-Methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohex-2-enone
    Compound 12 3-[4-Methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohex-2-enone
  13. 2,4,8,10-Tetramethyl-N,N-bis[(S)-1-phenylethyl]dibenzo[d,f][1,3,2]dioxaphosphepin-6-amine
    Compound (–)-13 2,4,8,10-Tetramethyl-N,N-bis[(S)-1-phenylethyl]dibenzo[d,f][1,3,2]dioxaphosphepin-6-amine
  14. (S)-Trimethyl{{3-methyl-3-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohex-1-en-1-yl}oxy}silane
    Compound (–)-14 (S)-Trimethyl{{3-methyl-3-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohex-1-en-1-yl}oxy}silane
  15. (S)-3-Methyl-3-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohexanone
    Compound (+)-15 (S)-3-Methyl-3-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohexanone
  16. (2S,3S)-2-Acryloyl-3-methyl-3-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohexanone
    Compound 16 (2S,3S)-2-Acryloyl-3-methyl-3-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohexanone
  17. (1R,3S,8S)-8,12,15,15-Tetramethyl-tricyclo[,8]pentadec-11-en-2,4-dione
    Compound (+)-17 (1R,3S,8S)-8,12,15,15-Tetramethyl-tricyclo[,8]pentadec-11-en-2,4-dione
  18. (2S,3S)-3-Methyl-2-[(R)-2,2,4-trimethyl-3-vinylcyclohex-3-enecarbonyl]-3-vinylcyclohexanone
    Compound 18 (2S,3S)-3-Methyl-2-[(R)-2,2,4-trimethyl-3-vinylcyclohex-3-enecarbonyl]-3-vinylcyclohexanone
  19. 2,2,4-Trimethyl-3-{2-[(S)-1-methyl-3-oxocyclohexyl]ethyl}cyclohex-3-enecarbaldehyde
    Compound 19 2,2,4-Trimethyl-3-{2-[(S)-1-methyl-3-oxocyclohexyl]ethyl}cyclohex-3-enecarbaldehyde
  20. (2S)-2,6-Dimethyl-2-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohexanone
    Compound 20 (2S)-2,6-Dimethyl-2-[4-methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]cyclohexanone
  21. 1-{2-[4-Methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]-6-methylenecyclohex-1-en-1-yl}prop-2-en-1-one
    Compound 21 1-{2-[4-Methyl-3-(prop-1-en-2-yl)pent-3-en-1-yl]-6-methylenecyclohex-1-en-1-yl}prop-2-en-1-one


  1. Heusler, F. The Chemistry of the Terpenes. (P. Blakiston's Son & Co., 1902).
  2. Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones (Wiley-VCH, 2006).
  3. Maimone, T. J. & Baran, P. S. Modern synthetic efforts toward biologically active terpenes. Nature Chem. Biol. 3, 396407 (2007).
  4. Schiff, P. B., Fant, J. & Horwitz, S. B. Promotion of microtubule assembly in vitro by taxol. Nature 277, 665667 (1979).
  5. Suffness, M. TAXOL®: Science and Applications (CRC Press, 1995).
  6. Itokawa, H. & Lee, K.-H. Taxus: The Genus Taxus (Taylor & Francis, 2003).
  7. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P. & McPhail, A. T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93, 23252327 (1971).
  8. Denis, J. N. et al. Highly efficient, practical approach to natural taxol. J. Am. Chem. Soc. 110, 59175919 (1988).
  9. Holton, R. A. Method for preparation of taxol. European patent EP0400971 (A2) (1990).
  10. Ojima, I. et al. New and efficient approaches to the semisynthesis of taxol and its C-13 side chain analogs by means of β-lactam synthon method. Tetrahedron 48, 69857012 (1992).
  11. Nicolaou, K. C. et al. Total synthesis of taxol. Nature 367, 630634 (1994).
  12. Holton, R. A. et al. First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 116, 15971598 (1994).
  13. Holton, R. A. et al. First total synthesis of taxol. 2. Completion of the C and D rings. J. Am. Chem. Soc. 116, 15991600 (1994).
  14. Masters, J. J., Link, J. T., Snyder, L. B., Young, W. B. & Danishefsky, S. J. A total synthesis of taxol. Angew. Chem. Int. Ed. 34, 17231726 (1995).
  15. Wender, P. A. et al. The pinene path to taxanes. 5. Stereocontrolled synthesis of a versatile taxane precursor. J. Am. Chem. Soc. 119, 27552756 (1997).
  16. Wender, P. A. et al. The pinene path to taxanes. 6. A concise stereocontrolled synthesis of taxol. J. Am. Chem. Soc. 119, 27572758 (1997).
  17. Shiina, I., Saitoh, K., Fréchard-Ortuno, I. & Mukaiyama, T. Total asymmetric synthesis of taxol by dehydration condensation between 7-TES baccatin III and protected N-benzoylphenylisoserines prepared by enantioselective aldol reaction. Chem. Lett. 27, 34 (1998).
  18. Morihira, K. et al. Enantioselective total synthesis of taxol. J. Am. Chem. Soc. 120, 1298012981 (1998).
  19. Lim, J. A Total Synthesis of Taxol. PhD thesis, Harvard University (2000).
  20. Doi, T. et al. A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 1, 370383 (2006).
  21. Hudlicky, T. & Reed, J. W. The Way of Synthesis: Evolution of Design and Methods for Natural Products 1st edn, 165 (Wiley-VCH, 2007).
  22. Ajikumar, P. K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 7074 (2010).
  23. Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824828 (2009).
  24. Davis, E. M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes and diterpenes. Top. Curr. Chem. 209, 5395 (2000).
  25. Appendino, G. et al. Taxanes from the seeds of Taxus baccata. J. Nat. Prod. 56, 514520 (1993).
  26. Woods, M. C., Chiang, H.-C., Nakadaira, Y. & Nakanishi, K. Nuclear Overhauser effect, a unique method of defining the relative stereochemistry and conformation of taxane derivatives. J. Am. Chem. Soc. 90, 522523 (1968).
  27. Hanson, J. R. Diterpenoids. Nat. Prod. Rep. 10, 159174 (1993).
  28. Miller, R. W. A brief survey of Taxus alkaloids and other taxane derivatives. J. Nat. Prod. 43, 425437 (1980).
  29. Guéritte-Voegelein, F., Guénard, D. & Potier, P. Taxol and derivatives: a biogenetic hypothesis. J. Nat. Prod. 50, 918 (1987).
  30. Baloglu, E. & Kingston, D. G. I. The taxane diterpenoids. J. Nat. Prod. 62, 14481472 (1999).
  31. Shigemori, H. & Kobayashi, J. Biological activity and chemistry of taxoids from the Japanese yew, Taxus cuspidata. J. Nat. Prod. 67, 245256 (2004).
  32. Shi, Q.-W. & Kiyota, H. New natural taxane diterpenoids from Taxus species since 1999. Chem. Biodiversity 2, 15971623 (2005).
  33. Ishihara, Y. & Baran, P. S. Two-phase terpene total synthesis: historical perspective and application to the Taxol® problem. Synlett 17331745 (2010).
  34. Koepp, A. E. et al. Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in pacific yew. J. Biol. Chem. 270, 86868690 (1995).
  35. Jackson, R. W. & Shea, K. J. Synthesis of a C-1 epi taxinine intermediate using the type 2 intramolecular Diels–Alder approach. Tetrahedron Lett. 35, 13171320 (1994).
  36. Brown, P. A. & Jenkins, P. R. Synthesis of the taxane ring system using an intramolecular Diels–Alder reaction of a 2-substituted diene. J. Chem. Soc. Perkin Trans. I 13031309 (1986).
  37. Rubenstein, S. M. & Williams, R. M. Studies on the biosynthesis of taxol: total synthesis of taxa-4(20),11(12)-diene and taxa-4(5),11(12)-diene. The first committed biosynthetic intermediate. J. Org. Chem. 60, 72157223 (1995).
  38. Yadav, J. S. Synthesis of antitumour agents. Pure Appl. Chem. 65, 13491356 (1993).
  39. Winkler, J. D., Kim, H. S. & Kim, S. A highly efficient synthesis of taxanes via the tandem Diels–Alder reaction. Tetrahedron Lett. 36, 687690 (1995).
  40. Laurent, A. et al. Part 1: Efficient strategies for the construction of variably substituted bicyclo[5.3.1]undecenones (AB taxane ring systems). Can. J. Chem. 82, 215226 (2004).
  41. Magnus, P. et al. Taxane diterpenes 5: synthesis of the A- and C-rings: an unusual rearrangement of an N-hydroxyimino lactone. Tetrahedron 55, 64356452 (1999).
  42. Gaich, T. & Baran, P. S. Aiming for the ideal synthesis. J. Org. Chem. 75, 46574673 (2010).
  43. Vuagnoux-d'Augustin, M. & Alexakis, A. Copper-catalyzed asymmetric conjugate addition of trialkylaluminium reagents to trisubstituted enones: construction of chiral quaternary centers. Chem. Eur. J. 13, 96479662 (2007).
  44. May, T. L., Brown, M. K. & Hoveyda, A. H. Enantioselective synthesis of all-carbon quaternary stereogenic centres by catalytic asymmetric conjugate additions of alkyl and aryl aluminum reagents to five-, six-, and seven-membered-ring β-substituted cyclic enones. Angew. Chem. Int. Ed. 47, 73587362 (2008).
  45. Petersson, M. J. et al. Unexpected regiospecific reactivity of a substituted phthalic anhydride. Tetrahedron 63, 13951401 (2007).
  46. Mukaiyama, T., Narasaka, K. & Banno, K. New aldol type reaction. Chem. Lett. 2, 10111014 (1973).
  47. Kobayashi, S., Hachiya, I. & Yamanoi, Y. Repeated use of the catalyst in Ln(OTf)3-catalyzed aldol and allylation reactions. Bull. Chem. Soc. Jpn 67, 23422344 (1994).
  48. Deshayes, H. & Pete, J.-P. Reduction of alkyl esters to alkanes by sodium in hexamethylphosphoric triamide. A new method for the deoxygenation of alcohols. J. Chem. Soc. Chem. Commun. 567568 (1978).
  49. Cain, C. M., Cousins, R. P. C., Coumbarides, G. & Simpkins, N. S. Asymmetric deprotonation of prochiral ketones using chiral lithium amide bases. Tetrahedron 46, 523544 (1990).
  50. Wernerova, M. & Hudlicky, T. On the practical limits of determining isolated product yields and ratios of stereoisomers: reflections, analysis, and redemption. Synlett 27012707 (2010).

Download references

Author information

  1. These authors contributed equally to this manuscript

    • Abraham Mendoza &
    • Yoshihiro Ishihara


  1. Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA

    • Abraham Mendoza,
    • Yoshihiro Ishihara &
    • Phil S. Baran


A.M., Y.I. and P.S.B. conceived the synthetic route, conducted the experimental work, analysed the results and wrote the manuscript.

Competing financial interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (1,249 KB)

    Supplementary information

  2. Supplementary information (1,372 KB)

    Supplementary information, NMR spectra

Crystallographic information files

  1. Supplementary information (13 KB)

    Crystallographic data for compound (+)-6

  2. Supplementary information (16 KB)

    Crystallographic data for compound S2

Additional data