Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO

Abstract

Catalytic hydrogenation of organic carbonates, carbamates and formates is of significant interest both conceptually and practically, because these compounds can be produced from CO2 and CO, and their mild hydrogenation can provide alternative, mild approaches to the indirect hydrogenation of CO2 and CO to methanol, an important fuel and synthetic building block. Here, we report for the first time catalytic hydrogenation of organic carbonates to alcohols, and carbamates to alcohols and amines. Unprecedented homogeneously catalysed hydrogenation of organic formates to methanol has also been accomplished. The reactions are efficiently catalysed by dearomatized PNN Ru(II) pincer complexes derived from pyridine- and bipyridine-based tridentate ligands. These atom-economical reactions proceed under neutral, homogeneous conditions, at mild temperatures and under mild hydrogen pressures, and can operate in the absence of solvent with no generation of waste, representing the ultimate ‘green’ reactions. A possible mechanism involves metal–ligand cooperation by aromatization–dearomatization of the heteroaromatic pincer core.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alternative routes to methanol based on methyl formate, dimethyl carbonate and organo-carbamates.
Figure 2: Hydrogenation of a benzyl carbamate.
Figure 3: X-ray structure of complex 3 (50% probability level).
Figure 4: Reactivities of the saturated Ru(II)–trans-dihydride complex 3, suggesting its intermediacy in the catalytic hydrogenation mechanism.
Figure 5: Postulated mechanism for novel, homogeneous hydrogenation of dimethyl carbonate and methyl formate to methanol catalysed by complex 1.

Similar content being viewed by others

References

  1. Ito, M. & Ikariya, T. Catalytic hydrogenation of polar organic functionalities based on Ru-mediated heterolytic dihydrogen cleavage. Chem. Commun. 43, 5134–5142 (2007).

    Google Scholar 

  2. Clapham, S. E., Hadzovic, A. & Morris, R. H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord. Chem. Rev. 248, 2201–2237 (2004).

    CAS  Google Scholar 

  3. O, W. W. N., Lough, A. J. & Morris, R. H. The hydrogenation of molecules with polar bonds catalyzed by a ruthenium(II) complex bearing a chelating N-heterocyclic carbene with a primary amine donor. Chem. Commun. 46, 8240–8242 (2010) and references therein.

    CAS  Google Scholar 

  4. Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Efficient homogeneous catalytic hydrogenation of esters to alcohols. Angew. Chem. Int. Ed. 45, 1113–1115 (2006).

    CAS  Google Scholar 

  5. Saudan, L. A., Saudan, C. M., Debieux, C. & Wyss, P. Dihydrogen reduction of carboxylic esters to alcohols under the catalysis of homogeneous ruthenium complexes: high efficiency and unprecedented chemoselectivity. Angew. Chem. Int. Ed. 46, 7473–7476 (2007) and references therein.

    CAS  Google Scholar 

  6. Núñez Magro, A. A., Eastham, G. R. & Cole-Hamilton, D. J. The synthesis of amines by the homogeneous hydrogenation of secondary and primary amides. Chem. Commun. 43, 3154–3156 (2007).

    Google Scholar 

  7. Balaraman, E., Gnanaprakasam, B., Shimon, L. J. W. & Milstein, D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 132, 16756–16758 (2010).

    CAS  PubMed  Google Scholar 

  8. Schaffner, B., Schaffner, F., Verevkin, S. P. & Borner, A. Organic carbonates as solvents in synthesis and catalysis. Chem. Rev. 110, 4554–4581 (2010).

    CAS  PubMed  Google Scholar 

  9. Kocienski, P. J. Protecting Groups 3rd edn (Thieme, 2005).

    Google Scholar 

  10. Ito, M., Koo, L. W., Himizu, A., Kobayashi, C., Sakaguchi, A. & Ikariya, T. Hydrogenation of N-acylcarbamates and N-acylsulfonamides catalyzed by a bifunctional [Cp*Ru(PN)] complex. Angew. Chem. Int. Ed. 48, 1324–1327 (2009).

    CAS  Google Scholar 

  11. Gormley, R. J., Rao, V. U. S. & Soong, Y. Methyl formate hydrogenolysis for low-temperature methanol synthesis. Appl. Catal. A 87, 81–101 (1992) and references therein.

    CAS  Google Scholar 

  12. Iwasa, N., Terashita, M., Arai, M. & Takezawa, N. New catalytic functions of Pd and Pt catalysts for hydrogenolysis of methyl formate. React. Kinet. Catal. Lett. 74, 93–98 (2001) and references therein.

    CAS  Google Scholar 

  13. Grey, R. A., Pez, G. P. & Wallo, A. Anionic metal hydride catalysts. 2. Application to the hydrogenation of ketones, aldehydes, carboxylic acid esters, and nitriles. J. Am. Chem. Soc. 103, 7536–7542 (1981).

    CAS  Google Scholar 

  14. Bart, J. C. J. & Sneeden, R. P. A. Copper-zinc oxide-alumina methanol catalysts revisited. Catal. Today 2, 1–124 (1987).

    CAS  Google Scholar 

  15. Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J. Handbook of Heterogeneous Catalysis 3rd edn, Ch. 13.13 (Wiley-VCH, 2008).

    Google Scholar 

  16. Lee, J. S., Kim, J. C. & Kim, Y. G. Methyl formate as a new building block in C1 chemistry. Appl. Catal. 57, 1–30 (1990).

    CAS  Google Scholar 

  17. Girolamo, M. D. et al. Methanol carbonylation to methyl formate catalyzed by strongly basic resins. Catal. Lett. 38, 127–131 (1996).

    Google Scholar 

  18. Delledonne, D., Rivetti, F. & Romano, U. Oxidative carbonylation of methanol to dimethyl carbonate (DMC): a new catalytic system. J. Organomet. Chem. 448, C15–C19 (1995).

    Google Scholar 

  19. Delledonne, D., Rivetti, F. & Romano, U. Developments in the production and application of dimethyl carbonate. Appl. Catal. A 221, 241–251 (2001).

    CAS  Google Scholar 

  20. Ma, J. et al. A short review of catalysis for CO2 conversion. Catal. Today 148, 221–231 (2009).

    CAS  Google Scholar 

  21. Jiang, Z., Xiao, T., Kuznetsov, V. L. & Edwards, P. P. Turning carbon dioxide into fuel. Phil. Trans. R. Soc. A 368, 3343–3364 (2010).

    CAS  PubMed  Google Scholar 

  22. Jessop, P. G., Ikariya, T. & Noyori, R. Homogeneous hydrogenation of carbon dioxide. Chem. Rev. 95, 259–272 (1995).

    CAS  Google Scholar 

  23. Leitner, W. Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives from CO2 . Angew. Chem. Int. Ed. 34, 2207–2221 (1995).

    CAS  Google Scholar 

  24. Jessop, P. G., Joó, F. & Tai, C. C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coord. Chem. Rev. 248, 2425–2442 (2004).

    CAS  Google Scholar 

  25. Federsel, C., Jackstell, R. & Beller, M. State-of-the-art catalysts for hydrogenation of carbon dioxide. Angew. Chem. Int. Ed. 49, 6254–6257 (2010).

    CAS  Google Scholar 

  26. Jessop, P. G., Hsiao, Y., Ikariya, T. & Noyori, R. Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J. Am. Chem. Soc. 118, 344–355 (1996).

    CAS  Google Scholar 

  27. Yu, K. M. K., Yeung, C. M. Y. & Tsang, S. C. Carbon dioxide fixation into chemicals (methyl formate) at high yields by surface coupling over a Pd/Cu/ZnO nano catalyst. J. Am. Chem. Soc. 129, 6360–6361 (2007).

    CAS  PubMed  Google Scholar 

  28. Federsel, C. et al. A well-defined iron catalyst for the reduction of bicarbonates and carbon dioxide to formates, alkyl formates, and formamides. Angew. Chem. Int. Ed. 49, 9777–9780 (2010).

    CAS  Google Scholar 

  29. Tanaka, R., Yamashita, M. & Nozaki, K. Catalytic hydrogenation of carbon dioxide using Ir(III)–pincer complexes. J. Am. Chem. Soc. 131, 14168–14169 (2009).

    CAS  PubMed  Google Scholar 

  30. Evans, J. W., Casey, P. S., Wainwright, M. S., Trimm, D. L. & Cant, N. W. Hydrogenolysis of alkyl formates over a copper chromite catalyst. Appl. Catal. 7, 31–41 (1983).

    CAS  Google Scholar 

  31. Monti, D. M., Cant, N. W., Grimm, D. L. & Wainwright, M. S. Hydrogenolysis of methyl formate over copper on silica. J. Catal. 100, 28–38 (1986).

    CAS  Google Scholar 

  32. Gormley, R. J., Rao, V. U. S. & Soong, Y. Methyl formate hydrogenolysis for low-temperature methanol synthesis. Appl. Catal. A 87, 81–101 (1992) and references therein.

    CAS  Google Scholar 

  33. Iwasa, N., Terashita, M., Arai, M. & Takezawa, N. New catalytic functions of Pd and Pt catalysts for hydrogenolysis of methyl formate. React. Kinet. Catal. Lett. 74, 93–98 (2001) and references therein.

    CAS  Google Scholar 

  34. Monti, D. M., Kohler, M. A., Wainwright, M. S., Trimm, D. L. & Cant, N. W. Liquid phase hydrogenolysis of methyl formate in a semi batch reactor. Appl. Catal. 22, 123–136 (1986).

    CAS  Google Scholar 

  35. Sakakura, T. & Kohno, K. The synthesis of organic carbonates from carbon dioxide. Chem. Commun. 45, 1312–1330 (2009).

    Google Scholar 

  36. Sakakura, T., Choi, J. C. & Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 107, 2365–2387 (2007).

    CAS  PubMed  Google Scholar 

  37. Federsel, C., Jackstell, R., Boddien, A., Laurenczy, G. & Beller, M. Ruthenium-catalyzed hydrogenation of bicarbonate in water. ChemSusChem. 3, 1048–1050 (2010).

    CAS  PubMed  Google Scholar 

  38. Abla, M., Choi, J. C. & Sakakura, T. Halogen-free process for the conversion of carbon dioxide to urethanes by homogeneous catalysis. Chem. Commun. 37, 2238–2239 (2001).

    Google Scholar 

  39. Abla, M., Choi, J. C. & Sakakura, T. Nickel-catalyzed dehydrative transformation of CO2 to urethanes. Green Chem. 6, 524–525 (2004).

    CAS  Google Scholar 

  40. Zhang, J., Leitus, G., Ben-David, Y. & Milstein, D. Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J. Am. Chem. Soc. 127, 10840–10841 (2005).

    CAS  PubMed  Google Scholar 

  41. Gunanathan, C., Ben-David, Y. & Milstein, D. Direct synthesis of amides from alcohols and amines with liberation of H2 . Science. 317, 790–792 (2007).

    CAS  PubMed  Google Scholar 

  42. Gnanaprakasam, B., Zhang, J. & Milstein, D. Direct synthesis of imines from alcohols and amines with liberation of H2 . Angew. Chem. Int. Ed. 49, 1468–1471 (2010).

    CAS  Google Scholar 

  43. Gnanaprakasam, B., Ben-David, Y. & Milstein, D. Ruthenium pincer-catalyzed acylation of alcohols using esters with liberation of hydrogen under neutral conditions. Adv. Syn. Cat. 352, 3169–3173 (2010).

    CAS  Google Scholar 

  44. Milstein, D. Discovery of environmentally benign catalytic reactions of alcohols catalyzed by pyridine-based pincer Ru complexes, based on metal–ligand cooperation. Top. Catal. 53, 915–923 (2010).

    CAS  Google Scholar 

  45. Langer, R., Leitus, G., Ben-David, Y. & Milstein, D. Efficient hydrogenation of ketones catalyzed by an iron pincer complex. Angew. Chem. Int. Ed. 50, 2120–2124 (2011).

    CAS  Google Scholar 

  46. Gnanaprakasam, B. & Milstein, D. Synthesis of amides from esters and amines with liberation of H2 under neutral conditions. J. Am. Chem. Soc. 133, 1682–1685 (2011).

    CAS  PubMed  Google Scholar 

  47. Gunanathan, C. & Milstein, D. Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. Int. Ed. 47, 8661–8664 (2008).

    CAS  Google Scholar 

  48. Gunanathan, C., Shimon, L. J. W. & Milstein, D. Direct conversion of alcohols to acetals and H2 catalyzed by an acridine-based ruthenium pincer complex. J. Am. Chem. Soc. 131, 3146–3147 (2009).

    CAS  PubMed  Google Scholar 

  49. Kohl, S. W. et al. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science 324, 74–77 (2009).

    CAS  PubMed  Google Scholar 

  50. Olah, G. A., Geoppert, A. & Surya Prakash, G. K. Beyond Oil and Gas: The Methanol Economy (Wiley-VCH, 2006).

    Google Scholar 

  51. Huang, Y. H. & Gladysz, J. A. Aldehyde and ketone ligands in organometallic complexes and catalysis. J. Chem. Educ. 65, 298–303 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council under the FP7 framework (ERC no. 246837), by the Israel Science Foundation, and by the MINERVA Foundation. D.M. is the Israel Matz Professorial Chair of Organic Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

E.B. carried out catalytic experiments, mechanistic studies and contributed to writing the manuscript. C.G. carried out catalytic experiments and contributed to writing the manuscript. J.Z. prepared and crystallized complex 3. L.J.W.S. conducted the X-ray structural study of complex 3. D.M. carried out the design and direction of the project and contributed to writing the manuscript.

Corresponding author

Correspondence to David Milstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 652 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaraman, E., Gunanathan, C., Zhang, J. et al. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chem 3, 609–614 (2011). https://doi.org/10.1038/nchem.1089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1089

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing