Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploring and exploiting chemistry at the cell surface

Abstract

Engineering the surface chemistry of a material so that it can interface with cells is an extraordinarily demanding task. The surface of a cell is composed of thousands of different lipids, proteins and carbohydrates, all intricately (and dynamically) arranged in three dimensions on multiple length scales. This complexity presents both a challenge and an opportunity to chemists working on bioactive interfaces. Here we discuss how some of these challenges can be met with interdisciplinary material synthesis. We also review the most popular classes of functional molecules grafted on engineered surfaces and explore some alternatives that may offer greater flexibility and specificity. Finally, we discuss the emerging field of dynamic surfaces capable of stimulating and responding to cellular activity in real time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of cell surface properties.
Figure 2: Interdisciplinary achievements and possibilities within chemistry for the development of bioactive surfaces.
Figure 3: Molecular diversity of cell adhesion motifs available for surface engineering.
Figure 4: Some of the pitfalls and possibilities associated with cellular microenvironment remodelling.

Similar content being viewed by others

References

  1. Apple, D. J. Nicholas Harold Lloyd Ridley. 10 July 1906 — 25 May 2001. Biogr. Mem. Fellows R. Soc. 53, 285–307 (2007).

    Article  Google Scholar 

  2. Derda, R. et al. High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J. Am. Chem. Soc. 132, 1289–1295 (2010).

    Article  CAS  Google Scholar 

  3. Anstee, D. J. The nature and abundance of human red cell surface glycoproteins. J. Immunogenet. 17, 219–225 (1990).

    Article  CAS  Google Scholar 

  4. Chen, W. T. & Singer, S. J. Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts. J Cell Biol. 95, 205–222 (1982).

    Article  CAS  Google Scholar 

  5. Arnold, M. et al. Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5, 383 (2004).

    Article  CAS  Google Scholar 

  6. Hersel, U., Dahmen, C. & Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003).

    Article  CAS  Google Scholar 

  7. Hirschfeld-Warneken, V. C. et al. Cell adhesion and polarisation on molecularly defined spacing gradient surfaces of cyclic RGDfk peptide patches. Eur. J. Cell Biol. 87, 743–750 (2008).

    Article  CAS  Google Scholar 

  8. Boturyn, D., Coll, J. L., Garanger, E., Favrot, M. C. & Dumy, P. Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. J. Am. Chem. Soc. 126, 5730–5739 (2004).

    Article  CAS  Google Scholar 

  9. Martins, M. D. F. & Bairos, V. A. Glycocalyx of lung epithelial cells. Int. Rev. Cytol. 216, 131–173 (2002).

    Article  CAS  Google Scholar 

  10. Tateno, H. et al. A novel strategy for mammalian cell surface glycome profiling using lectin microarray. Glycobiology 17, 1138–1146 (2007).

    Article  CAS  Google Scholar 

  11. Nieuwdorp, M. et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J. Appl. Physiol. 104, 845–852 (2008).

    Article  Google Scholar 

  12. Pierres, A., Benoliel, A. M., Touchard, D. & Bongrand, P. How cells tiptoe on adhesive surfaces before sticking. Biophys. J. 94, 4114–4122 (2008).

    Article  CAS  Google Scholar 

  13. Zeck, G. & Fromherz, P. Repulsion and attraction by extracellular matrix protein in cell adhesion studied with nerve cells and lipid vesicles on silicon chips. Langmuir 19, 1580–1585 (2003).

    Article  CAS  Google Scholar 

  14. Beer, J. H., Springer, K. T. & Coller, B. S. Immobilized Arg-Gly-Asp (RGD) peptides of varying lengths as structural probes of the platelet glycoprotein-IIb/IIIa receptor. Blood 79, 117–128 (1992).

    CAS  PubMed  Google Scholar 

  15. Kuhlman, W., Taniguchi, I., Griffith, L. G. & Mayes, A. M. Interplay between PEO tether length and ligand spacing governs cell spreading on RGD-modified PMMA-g-PEO comb copolymers. Biomacromolecules 8, 3206–3213 (2007).

    Article  CAS  Google Scholar 

  16. Harris, B. P. & Metters, A. T. Generation and characterization of photopolymerized polymer brush gradients. Macromolecules 39, 2764–2772 (2006).

    Article  CAS  Google Scholar 

  17. Tomlinson, M. R. & Genzer, J. Formation of grafted macromolecular assemblies with a gradual variation of molecular weight on solid substrates. Macromolecules 36, 3449–3451 (2003).

    Article  CAS  Google Scholar 

  18. Lamanna, W. C. et al. The heparanome—the enigma of encoding and decoding heparan sulfate sulfation. J. Biotechnol. 129, 290–307 (2007).

    Article  CAS  Google Scholar 

  19. Lanner, F. et al. Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells 28, 191–200 (2009).

    Google Scholar 

  20. Curtis, A. S. G. The competitive effects of serum proteins on cell adhesion. J. Cell. Sci. 71, 17–35 (1984).

    CAS  PubMed  Google Scholar 

  21. Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 14, 110–115 (2004).

    Article  CAS  Google Scholar 

  22. Stevens, M. M. & George, J. H. Exploring and engineering the cell surface interface. Science 310, 1135–1138 (2005).

    Article  CAS  Google Scholar 

  23. Massia, S. P. & Hubbell, J. A. Covalent surface immobilization of Arg-Gly-Asp-containing and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal. Biochem. 187, 292–301 (1990).

    Article  CAS  Google Scholar 

  24. Pierschbacher, M. D. & Ruoslahti, E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 262, 17294–17298 (1987).

    CAS  PubMed  Google Scholar 

  25. Kolhar, P., Kotamraju, V. R., Hikita, S. T., Clegg, D. O. & Ruoslahti, E. Synthetic surfaces for human embryonic stem cell culture. J. Biotechnol. 146, 143–146 (2010).

    Article  CAS  Google Scholar 

  26. Kam, L., Shain, W., Turner, J. N. & Bizios, R. Selective adhesion of astrocytes to surfaces modified with immobilized peptides. Biomaterials 23, 511–515 (2002).

    Article  CAS  Google Scholar 

  27. Massia, S. P. & Hubbell, J. A. Immobilized amines and basic amino acids as mimetic heparin-binding domains for cell-surface proteoglycan-mediated adhesion. J. Biol. Chem. 267, 10133–10141 (1992).

    CAS  PubMed  Google Scholar 

  28. Cardin, A. D. & Weintraub, H. J. R. Molecular modeling of protein-glycosaminoglycan interactions. Arterioscler. Thromb. Vasc. Biol. 9, 21–32 (1989).

    CAS  Google Scholar 

  29. Rezania, A. & Healy, K. E. Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol. Prog. 15, 19–32 (1999).

    Article  CAS  Google Scholar 

  30. Weis, W. I. & Drickamer, K. Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem. 65, 441–473 (1996).

    Article  CAS  Google Scholar 

  31. Sharon, N. & Lis, H. in Molecular Immunology of Complex Carbohydrates 2 (ed. Wu, A. M.) 1–16 (Springer, 2001).

    Book  Google Scholar 

  32. Oka, J. A. & Weigel, P. H. Binding and spreading of hepatocytes on synthetic galactose culture surfaces occur as distinct and separable threshold responses. J. Cell. Biol. 103, 1055–1060 (1986).

    Article  CAS  Google Scholar 

  33. Griffith, L. G. & Lopina, S. Microdistribution of substratum-bound ligands affects cell function: hepatocyte spreading on PEO-tethered galactose. Biomaterials 19, 979–986 (1998).

    Article  CAS  Google Scholar 

  34. Anderson, D. G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  35. Blixt, O. et al. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc. Natl Acad. Sci. USA 101, 17033–17038 (2004).

    Article  CAS  Google Scholar 

  36. Plante, O. J., Palmacci, E. R. & Seeberger, P. H. Automated solid-phase synthesis of oligosaccharides. Science 23, 1523–1527 (2001).

    Article  Google Scholar 

  37. Luo, W., Chan, E. W. L. & Yousaf, M. N. Tailored electroactive and quantitative ligand density microarrays applied to stem cell differentiation. J. Am. Chem. Soc. 132, 2614–2621 (2010).

    Article  CAS  Google Scholar 

  38. Steinman, R. M., Brodie, S. E. & Cohn, A. Z. Membrane flow during pinocytosis: a stereologic analysis. J. Cell. Biol. 68, 665–687 (1976).

    Article  CAS  Google Scholar 

  39. Discher, D. E., Janmey, P. & Wang, Y-l. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  40. Deeg, J. et al. Impact of local versus global ligand density on cellular adhesion. Nano Lett. 11, 1469–1476 (2011).

    Article  CAS  Google Scholar 

  41. Zhong, C. et al. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell. Biol. 141, 539–551 (1998).

    Article  CAS  Google Scholar 

  42. Lahann, J. et al. A reversibly switching surface. Science 299, 371–374 (2003).

    Article  CAS  Google Scholar 

  43. Raeber, G. P., Lutolf, M. P. & Hubbell, J. A. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys. J. 89, 1374–1388 (2005).

    Article  CAS  Google Scholar 

  44. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).

    Article  CAS  Google Scholar 

  45. Palecek, S. P., Schmidt, C. E., Lauffenburger, D. A. & Horwitz, A. F. Integrin dynamics on the tail region of migrating fibroblasts. J. Cell. Sci. 109, 941–952 (1996).

    CAS  PubMed  Google Scholar 

  46. Yeo, W. S., Yousaf, M. N. & Mrksich, M. Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells. J. Am. Chem. Soc. 125, 14994–14995 (2003).

    Article  CAS  Google Scholar 

  47. Lee, E-J., Chan, E. W. L. & Yousaf, M. N. Spatio-temporal control of cell coculture interactions on surfaces. ChemBioChem 10, 1648–1653 (2009).

    Article  CAS  Google Scholar 

  48. Holland, N. B., Qiu, Y., Ruegsegger, M. & Marchant, R. E. Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers. Nature 392, 799–801 (1998).

    Article  CAS  Google Scholar 

  49. Koo, L. Y., Irvine, D. J., Mayes, A. M., Lauffenburger, D. A. & Griffith, L. G. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J. Cell. Sci. 115, 1423–1433 (2002).

    CAS  PubMed  Google Scholar 

  50. Wischerhoff, E. et al. Controlled cell adhesion on PEG-based switchable surfaces. Angew. Chem. Int. Ed. 47, 5666–5668 (2008).

    Article  CAS  Google Scholar 

  51. Lutz, J. F., Akdemir, O. & Hoth, A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly(NIPAm) over? J. Am. Chem. Soc. 128, 13046–13047 (2006).

    Article  CAS  Google Scholar 

  52. Yu, X., Wang, Z. Q., Jiang, Y. G., Shi, F. & Zhang, X. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Adv. Mater. 17, 1289–1293 (2005).

    Article  CAS  Google Scholar 

  53. Renner, C. & Moroder, L. Azobenzene as conformational switch in model peptides. ChemBioChem 7, 868–878 (2006).

    Article  CAS  Google Scholar 

  54. Collier, J. H. & Mrksich, M. Engineering a biospecific communication pathway between cells and electrodes. Proc. Natl Acad. Sci. USA 103, 2021–2025 (2006).

    Article  CAS  Google Scholar 

  55. Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213–19218 (2010).

    Article  CAS  Google Scholar 

  56. Place, E. S., Evans, N. D. & Stevens, M. M. Complexity in biomaterials for tissue engineering. Nature Mater. 8, 457–470 (2009).

    Article  CAS  Google Scholar 

  57. Aguilar, Z. et al. Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18, 6050–6062 (1999).

    Article  CAS  Google Scholar 

  58. Juliano, R. L. Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins and immunoglobulin-superfamily members. Annu. Rev. Pharmacol. Toxicol. 42, 283–323 (2002).

    Article  CAS  Google Scholar 

  59. Shin, H., Jo, S. & Mikos, A. G. Biomimetic materials for tissue engineering. Biomaterials 24, 4353–4364 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Weaver for constructive reading of this manuscript. M.M.S. thanks ERC starting investigator grant “Naturale” for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molly M. Stevens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mager, M., LaPointe, V. & Stevens, M. Exploring and exploiting chemistry at the cell surface. Nature Chem 3, 582–589 (2011). https://doi.org/10.1038/nchem.1090

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing