Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmable molecular recognition based on the geometry of DNA nanostructures

An Erratum to this article was published on 23 September 2011

This article has been updated

Abstract

From ligand–receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson–Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stacking of rectangles.
Figure 2: Recognition based on binary sequences of blunt ends and scaffold loops.
Figure 3: Recognition based on complementarity of origami edge shapes.
Figure 4: Control of cis-trans isomerism.

Similar content being viewed by others

Change history

  • 15 August 2011

    In the version of this Article previously published, in Fig. 2, the series of 1s and 0s on the images were incorrectly placed. Also, in the penultimate paragraph of the section 'Stacking of origami rectangles', the final sentence should have referred to Fig.1e,g. These errors have now been corrected in the HTML and PDF versions of the Article.

References

  1. Suckling, C. J. Molecular recognition – a universal molecular science? Cell. Mol. Life Sci. 47, 1093–1095 (1991).

    Article  CAS  Google Scholar 

  2. Xu, Q., Schlabach, M. R., Hannon, G. J. & Elledge, S. J. Design of 240,000 orthogonal 25mer DNA barcode probes. Proc. Natl Acad. Sci. USA 106, 2289–2294 (2009).

    Article  CAS  Google Scholar 

  3. Seeman, N. C. Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  4. Winfree, E., Liu, F. R., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  Google Scholar 

  5. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  6. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    Article  CAS  Google Scholar 

  7. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  8. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  CAS  Google Scholar 

  9. Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    Article  CAS  Google Scholar 

  10. Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054–6059 (2009).

    Article  CAS  Google Scholar 

  11. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article  CAS  Google Scholar 

  12. Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  Google Scholar 

  13. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    Article  CAS  Google Scholar 

  14. Gu, H., Chao, J., Xiao, S-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    Article  CAS  Google Scholar 

  15. Zimmerman, S. C. & Corbin, P. S. Heteroaromatic modules for self-assembly using multiple hydrogen bonds. Struct. Bonding 96, 63–94 (2000).

    Article  CAS  Google Scholar 

  16. Claessens, C. G. & Stoddart, J. F. π–π interactions in self-assembly. J. Phys. Org. Chem. 10, 254–272 (1997).

    Article  CAS  Google Scholar 

  17. Klosterman, J. K., Yamauchi, Y. & Fujita, M. Engineering discrete stacks of aromatic molecules. Chem. Soc. Rev. 38, 1714–1725 (2009).

    Article  CAS  Google Scholar 

  18. Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article  CAS  Google Scholar 

  19. Zhao, K. & Mason, T. G. Directing colloidal self-assembly through roughness-controlled depletion attractions. Phys. Rev. Lett. 99, 268301 (2007).

    Article  Google Scholar 

  20. Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276, 233–235 (1997).

    Article  CAS  Google Scholar 

  21. Rothemund, P. W. K. Using lateral capillary forces to compute by self-assembly. Proc. Natl Acad. Sci. USA 97, 984–989 (2000).

    Article  CAS  Google Scholar 

  22. Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112 (2005).

    Article  CAS  Google Scholar 

  23. Kool, E. T. Hydrogen bonding, base stacking, and steric effects in DNA replication. Annu. Rev. Biophys. Biomol. Struct. 30, 1–22 (2001).

    Article  CAS  Google Scholar 

  24. Protozanova, E., Yakovchuk, P. & Frank-Kamenetskii, M. D. Stacked–unstacked equilibrium at the nick site of DNA. J. Mol. Biol. 342, 775–785 (2004).

    Article  CAS  Google Scholar 

  25. Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–574 (2006).

    Article  CAS  Google Scholar 

  26. DeVoe, H. & Tinoco, I. Jr. The stability of helical polynucleotides: base contributions. J. Mol. Biol. 4, 500–517 (1962).

    Article  CAS  Google Scholar 

  27. Crothers, D. M. & Zimm, B. H. Theory of the melting transition of synthetic polynucleotides: evaluation of the stacking free energy. J. Mol. Biol. 9, 1–9 (1964).

    Article  CAS  Google Scholar 

  28. SantaLucia, J. & Hicks, D. The thermodynamics of DNA structural motifs. Ann. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article  CAS  Google Scholar 

  29. Nakata, M. et al. End-to-end stacking and liquid crystal condensation of 6 to 20 base pair DNA duplexes. Science 318, 1276–1279 (2007).

    Article  CAS  Google Scholar 

  30. Wang, R., Kuzuya, A., Liu, W. & Seeman, N. C. Blunt-ended DNA stacking interactions in a 3-helix motif. Chem. Commun. 46, 4905–4907 (2010).

    Article  CAS  Google Scholar 

  31. Crick, F. H. C. The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).

    Article  CAS  Google Scholar 

  32. Wang, J. C. Helical repeat of DNA in solution. Proc. Natl Acad. Sci. USA 76, 200–203 (1979).

    Article  CAS  Google Scholar 

  33. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  CAS  Google Scholar 

  34. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    Article  CAS  Google Scholar 

  35. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  Google Scholar 

  36. Kegler, K. et al. Polyelectrolyte-compression forces between spherical DNA brushes. Phys. Rev. Lett. 100, 118302 (2008).

    Article  Google Scholar 

  37. Endo, M., Sugita, T., Katsuda, Y., Hidaka, K. & Sugiyama, H. Programmed-assembly system using DNA jigsaw pieces. Chem. Eur. J. 16, 5362–5368 (2010).

    Article  CAS  Google Scholar 

  38. Nangreave, J., Yan, H. & Liu, Y. Studies of thermal stability of multivalent DNA hybridization in a nanostructured system. Biophys. J. 97, 563–571 (2009).

    Article  CAS  Google Scholar 

  39. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chem. 3, 103–113 (2011).

    Article  CAS  Google Scholar 

  40. Smirnov, S., Matray, T. J., Kool, E. T. & de los Santos, C. Integrity of duplex structures without hydrogen bonding: DNA with pyrene paired at abasic sites. Nucleic Acids Res. 30, 5561–5569 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support for the Molecular Programming Project from the US National Science Foundation for Expeditions in Computing (No. 0832824, http://molecular-programming.org) and the Computer and Communication Foundations Emerging Models and Technologies grants No. 0829951 and No. 0622254, the Semiconductor Research Corporation Focus Center on Functional Engineered Nano Architectonics, the Microsoft Corporation and Mark Sims of Nanorex Corporation. S.W. thanks the Benjamin M. Rosen Family Foundation for a graduate fellowship. The authors thank the DNA and Natural Algorithms laboratory, and in particular L. Qian, N. Dabby, D. Doty, R. Schulman and J. Szablowski for comments.

Author information

Authors and Affiliations

Authors

Contributions

S.W. and P.W.K.R. designed the experiments, analysed the data and co-wrote the paper. S.W. wrote the computer programs for designing bond types and performed binary code, shape code and thermodynamics experiments. P.W.K.R. performed cistrans isomerism experiments.

Corresponding authors

Correspondence to Sungwook Woo or Paul W. K. Rothemund.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4602 kb)

Supplementary information

Computer program codes for designing bond types (MATLAB files) (ZIP 878 kb)

Supplementary information

Installer for modified caDNAno program (ZIP 757 kb)

Supplementary information

caDNAno design files for shape systems (origami A,B,C, and D) and corner origami designs (ZIP 422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S., Rothemund, P. Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chem 3, 620–627 (2011). https://doi.org/10.1038/nchem.1070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1070

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing