Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ammonia formation by metal–ligand cooperative hydrogenolysis of a nitrido ligand

Abstract

Bioinspired hydrogenation of N2 to ammonia at ambient conditions by stepwise nitrogen protonation/reduction with metal complexes in solution has experienced remarkable progress. In contrast, the highly desirable direct hydrogenation with H2 remains difficult. In analogy to the heterogeneously catalysed Haber–Bosch process, such a reaction is conceivable via metal-centred N2 splitting and unprecedented hydrogenolysis of the nitrido ligands to ammonia. We report the synthesis of a ruthenium(IV) nitrido complex. The high nucleophilicity of the nitrido ligand is demonstrated by unusual N–C coupling with π-acidic CO. Furthermore, the terminal nitrido ligand undergoes facile hydrogenolysis with H2 at ambient conditions to produce ammonia in high yield. Kinetic and quantum chemical examinations of this reaction suggest cooperative behaviour of a phosphorus–nitrogen–phosphorus pincer ligand in rate-determining heterolytic hydrogen splitting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and reactivity of nitrido complex 5 and molecular structures of 5 and 6.
Figure 2: Computed lowest free-energy pathway for the hydrogenolysis of nitrido complex 5.

Similar content being viewed by others

References

  1. Allen, A. D. & Senoff, C. V. Nitrogenopentammineruthenium(II) complexes. J. Chem. Soc. Chem. Commun. 621–622 (1965).

  2. Chatt, J., Dilworth, J. R. & Richards, R. L. Recent advances in the chemistry of nitrogen fixation. Chem. Rev. 78, 589–625 (1978).

    Article  CAS  Google Scholar 

  3. Gambarotta, S. Dinitrogen fixation and activation after 30 years: a puzzle still unsolved. J. Organometal. Chem. 500, 117–126 (1995).

    Article  CAS  Google Scholar 

  4. Bazhenova, T. A. & Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev. 144, 69–145 (1995).

    Article  CAS  Google Scholar 

  5. Hidai, M. & Mizobe, Y. Recent advances in the chemistry of dinitrogen complexes. Chem. Rev. 95, 1115–1133 (1995).

    Article  CAS  Google Scholar 

  6. Fryzuk, M. D. & Johnson, S. A. The continuing story of dinitrogen activation. Coord. Chem. Rev. 200–202, 379–409 (2000).

    Article  Google Scholar 

  7. Gambarotta, S. & Scott, J. Multimetallic cooperative activation of N2 . Angew. Chem. Int. Ed. 43, 5298–5308 (2004).

    Article  CAS  Google Scholar 

  8. MacKay, B. A. & Fryzuk, M. D. Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem. Rev. 104, 385–402 (2004).

    Article  CAS  Google Scholar 

  9. Ohki, Y. & Fryzuk, M. D. Dinitrogen activation by group 4 metal complexes. Angew. Chem. Int. Ed. 46, 3180–3183 (2007).

    Article  CAS  Google Scholar 

  10. Schrock, R. R. Catalytic reduction of dinitrogen to ammonia by molybdenum: theory versus experiment. Angew. Chem. Int. Ed. 47, 5512–5522 (2008).

    Article  CAS  Google Scholar 

  11. Einsle, O. et al. Nitrogenase MoFe–protein at 1.16 Å resolution: a central ligand in the FeMo–cofactor. Science 297, 1697–1700 (2002).

    Article  Google Scholar 

  12. Yang, T-C. et al. The interstitial atom of the nitrogenase FeMo–cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J. Am. Chem. Soc. 127, 12804–12805 (2005).

    Article  CAS  Google Scholar 

  13. Dance, I. The mechanistically significant coordination chemistry of dinitrogen at FeMo–co, the catalytic site of nitrogenase. J. Am. Chem. Soc. 129, 1076–1088 (2007).

    Article  CAS  Google Scholar 

  14. Chatt, J., Pearman, A. J. & Richards, R. L. The reduction of mono-coordinated molecular nitrogen to ammonia in a protic environment. Nature 253, 39–40 (1975).

    Article  CAS  Google Scholar 

  15. Nishibayashi, Y., Iwai, S. & Hidai, M. Bimetallic system for nitrogen fixation: ruthenium-assisted protonation of coordinated N2 on tungsten with H2 . Science 279, 540–542 (1998).

    Article  CAS  Google Scholar 

  16. Betley, T. A. & Peters, J. C. A tetrahedrally coordinated L3Fe–Nx platform that accommodates terminal nitride (FeIV≡N) and dinitrogen (FeI–N2–FeI) ligands. J. Am. Chem. Soc. 126, 6252–6254 (2004).

    Article  CAS  Google Scholar 

  17. Scepaniak, J. J., Young, J. A., Bontchev, R. P. & Smith, J. M. Formation of ammonia from an iron nitrido complex. Angew. Chem. Int. Ed. 48, 3158–3160 (2009).

    Article  CAS  Google Scholar 

  18. Scepaniak, J. J. et al. Synthesis, structure, and reactivity of an iron(V) nitride. Science 331, 1049–1052 (2011).

    Article  CAS  Google Scholar 

  19. Pickett, C. J. & Talarmin, J. Electrosynthesis of ammonia. Nature 317, 652–653 (1985).

    Article  CAS  Google Scholar 

  20. Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    Article  CAS  Google Scholar 

  21. Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nature Chem. 3, 120–125 (2011).

    Article  CAS  Google Scholar 

  22. Fryzuk, M. D., Love, J. B., Rettig, S. J. & Young, V. G. Transformation of coordinated dinitrogen by reaction with dihydrogen and primary silanes. Science 275, 1445–1447 (1997).

    Article  CAS  Google Scholar 

  23. Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    Article  CAS  Google Scholar 

  24. Schlögl, R. Catalytic synthesis of ammonia ‘a never-ending story'? Angew. Chem. Int. Ed. 42, 2004–2008 (2003).

    Article  Google Scholar 

  25. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  26. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  Google Scholar 

  27. Laplaza, C. E. & Cummins, C. C. Dinitrogen cleavage by a three-coordinate molybdenum(III) complex. Science 268, 861–863 (1995).

    Article  CAS  Google Scholar 

  28. Zanotti-Gerosa, A. et al. Stepwise reduction of dinitrogen to nitride assisted by niobium bonded to oxygen donor atoms: the potential of reduced forms of niobium calix[4]arene. J. Am. Chem. Soc. 120, 437–438 (1998).

    Article  CAS  Google Scholar 

  29. Clentsmith, G. K. B., Bates, V. M. E., Hitchcock, P. B. & Cloke, F. G. N. Reductive cleavage of dinitrogen by a vanadium diamidoamine complex: the molecular structures of [V(Me3SiN{CH2CH2NSiMe3}2)(µ-N)]2 and K[V(Me3SiN{CH2CH2NSiMe3}2)(µ-N)]2 . J. Am. Chem. Soc. 121, 10444–10445 (1999).

    Article  CAS  Google Scholar 

  30. Solari, E. et al. Photochemical activation of the N≡N bond in a dimolybdenum–dinitrogen complex: formation of a molybdenum nitride. Angew. Chem. Int. Ed. 40, 3907–3909 (2001).

    Article  CAS  Google Scholar 

  31. Kawaguchi, H. & Matsuo, T. Dinitrogen-bond cleavage in a niobium complex supported by a tridentate aryloxide ligand. Angew. Chem. Int. Ed. 41, 2792–2794 (2002).

    Article  CAS  Google Scholar 

  32. Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerization. Angew. Chem. Int. Ed. 41, 3433–3436 (2002).

    Article  CAS  Google Scholar 

  33. Nikiforov, G. B., Vidyaratne, I., Gambarotta, S. & Korobkov, I. Titanium-promoted dinitrogen cleavage, partial hydrogenation, and silylation. Angew. Chem. Int. Ed. 48, 7415–7419 (2009).

    Article  CAS  Google Scholar 

  34. Shaver, M. P. & Fryzuk, M. D. Activation of molecular nitrogen: coordination, cleavage and functionalization of N2 mediated by metal complexes. Adv. Synth. Catal. 345, 1061–1076 (2003).

    Article  CAS  Google Scholar 

  35. Kubas, G. J. Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007).

    Article  CAS  Google Scholar 

  36. Caulton, K. G. The influence of π-stabilized unsaturation and filled/filled repulsions in transition metal chemistry. New J. Chem. 18, 25–41 (1994).

    CAS  Google Scholar 

  37. Walstrom, A. et al. A facile approach to a d4 Ru≡N: moiety. J. Am. Chem. Soc. 127, 5330–5331 (2005).

    Article  CAS  Google Scholar 

  38. Brown, S. D., Mehn, M. P. & Peters, J. C. Heterolytic H2 activation mediated by low-coordinate L3Fe-(µ-N)-FeL3 complexes to generate Fe(µ-NH)(µ-H)Fe species. J. Am. Chem. Soc. 127, 13146–13147 (2005).

    Article  CAS  Google Scholar 

  39. Vogel, C., Heinemann, F. W., Sutter, J., Anthon, C. & Meyer, K. An iron nitride complex. Angew. Chem. Int. Ed. 47, 2681–2684 (2008).

    Article  CAS  Google Scholar 

  40. Scepaniak, J. J. et al. Structural and spectroscopic characterization of an electrophilic iron nitrido complex. J. Am. Chem. Soc. 130, 10515–10517 (2008).

    Article  CAS  Google Scholar 

  41. Schöffel, J., Rogachev, A. Y., DeBeer George, S. & Burger, P. Isolation and hydrogenation of a complex with a terminal iridium–nitrido bond. Angew. Chem. Int. Ed. 48, 4734–4738 (2009).

    Article  Google Scholar 

  42. Käß, M., Friedrich, A., Drees, M. & Schneider, S. Ruthenium complexes with cooperative PNP ligands: bifunctional catalysts for the dehydrogenation of ammonia–borane. Angew. Chem. Int. Ed. 48, 905–907 (2009).

    Article  Google Scholar 

  43. Friedrich, A., Drees, M., Schmedt auf der Günne, J. & Schneider, S. Highly stereoselective proton/hydride exchange: assistance of hydrogen bonding for the heterolytic splitting of H2 . J. Am. Chem. Soc. 131, 17552–17553 (2009).

    Article  CAS  Google Scholar 

  44. Askevold, B., Khusniyarov, M. M., Herdtweck, E., Meyer, K. & Schneider, S. A square-planar ruthenium(II) complex with a low-spin configuration. Angew. Chem. Int. Ed. 49, 7566–7569 (2010).

    Article  CAS  Google Scholar 

  45. Watson, L. A., Ozerov, O. V., Pink, M. & Caulton, K. G. Four-coordinate, planar Ru(II). A triplet state as a response to a 14-valence electron configuration. J. Am. Chem. Soc. 125, 8426–8427 (2003).

    Article  CAS  Google Scholar 

  46. Pap, J. S., DeBeer George, S. & Berry, J. F. Delocalized metal–metal and metal–ligand multiple bonding in a linear Ru–Ru≡N unit: elongation of a traditionally short Ru≡N bond. Angew. Chem. Int. Ed. 47, 10102–10105 (2008).

    Article  CAS  Google Scholar 

  47. Musch Long, A. K., Yu, R. P., Timmer, G. H. & Berry, J. F. Aryl C–H bond amination by an electrophilic diruthenium nitride. J. Am. Chem. Soc. 132, 12228–12230 (2010).

    Article  CAS  Google Scholar 

  48. Nugent, W. A. & Mayer, J. M. Metal Ligand Multiple Bonds (Wiley, 1988).

  49. Eikey, R. A. & Abu-Omar, M. M. Nitrido and imido transition metal complexes of Groups 6–8. Coord. Chem. Rev. 243, 83–124 (2003).

    Article  CAS  Google Scholar 

  50. Walstrom, A., Fan, H., Pink, M. & Caulton, K. G. Unexpected selectivity in electrophilic attack on (PNP)RuN. Inorg. Chim. Acta 363, 633–636 (2010).

    Article  CAS  Google Scholar 

  51. Silvia, J. S. & Cummins, C. C. Two electron reduction of a vanadium(V) nitride by CO to release cyanate and open a coordination site. J. Am. Chem. Soc. 131, 446–447 (2008).

    Article  Google Scholar 

  52. Tran, B. L., Pink, M., Gao, X., Park, H. & Mindiola, D. J. Low-coordinate and neutral nitrido complexes of vanadium. J. Am. Chem. Soc. 132, 1458–1459 (2010).

    Article  CAS  Google Scholar 

  53. Mindiola, D. J. Early transition-metal hydrazido complexes: masked metallanitrenes from N–N bond scission. Angew. Chem. Int. Ed. 47, 1557–1559 (2008).

    Article  CAS  Google Scholar 

  54. Ashcraft, R. W., Raman, S. & Green, W. H. Ab initio aqueous thermochemistry: application to the oxidation of hydroxylamine in nitric acid solution J. Phys. Chem. B 111, 11968–11983 (2007).

    Article  CAS  Google Scholar 

  55. Schwarz, H. On the spin-forbiddeness of gas-phase ion–molecule reactions: a fruitful intersection of experimental and computational studies. Int. J. Mass Spectrom. 237, 75–105 (2004).

    Article  CAS  Google Scholar 

  56. Poli, R. & Harvey, J. N. Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges. Chem. Soc. Rev. 32, 1–8 (2003).

    Article  CAS  Google Scholar 

  57. Schröder, D., Shaik, S. & Schwarz, H. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145 (2000).

    Article  Google Scholar 

  58. Buncel, E. & Menon, B. Carbanion mechanisms. 6. Metalation of arylmethanes by potassium hydride/18-crown-6 ether in tetrahydrofuran and the acidity of hydrogen. J. Am. Chem. Soc. 99, 4457–4461 (1977).

    Article  CAS  Google Scholar 

  59. Clapham, S. E., Hadzovic, A. & Morris, R. H. Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord. Chem. Rev. 248, 2201–2237 (2004).

    Article  CAS  Google Scholar 

  60. Grützmacher, H. Cooperating ligands in catalysis. Angew. Chem. Int. Ed. 47, 1814–1818 (2008).

    Article  Google Scholar 

  61. Hölscher, M., Prechtl, M. H. G. & Leitner, W. Can [M(H)2(H2)(PXP)] pincer complexes (M = Fe, Ru, Os; X = N, O, S) serve as catalyst lead structures for NH3 synthesis from N2 and H2? Chem. Eur. J. 13, 6636–6643 (2007).

    Article  Google Scholar 

  62. Hölscher, M. & Leitner, W. Lewis acid assisted stabilization of side-on bonded N2 in [Ru(NCN)]–pincer complexes – computational catalyst design directed at NH3 synthesis from N2 and H2 . Chem. Eur. J. 16, 14266–14271 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Emmy Noether programme of the Deutsche Forschungsgemeinschaft (SCHN950/2-1). B.A. thanks the international graduate school NanoCat and the Technische Universität München Graduate School for support. The work in Frankfurt was supported by the Beilstein Institute as part of the NanoBiC research cooperative (project eNet). Computer time and excellent support, in particular by G. Laubender, was provided by the Center for Scientific Computing Frankfurt.

Author information

Authors and Affiliations

Authors

Contributions

B.A. and J.T.N. performed the synthetic work and spectrosopic examination, S.T. and M.D. the quantum chemical study and E.H. the crystallographic characterization, respectively. S.S. and M.C.H. designed and supervised the experimental and computational studies, respectively. The paper was written by B.A., S.T., M.D., M.C.H. and S.S. and all the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Max C. Holthausen or Sven Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1253 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 35 kb)

Supplementary information

Crystallographic data for compound 6·2 (CIF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askevold, B., Nieto, J., Tussupbayev, S. et al. Ammonia formation by metal–ligand cooperative hydrogenolysis of a nitrido ligand. Nature Chem 3, 532–537 (2011). https://doi.org/10.1038/nchem.1051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing