Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes

Abstract

Single-molecule magnets approach the ultimate size limit for spin-based devices. These complexes can retain spin information over long periods of time at low temperature, suggesting possible applications in high-density information storage, quantum computing and spintronics. Notably, the success of most such applications hinges upon raising the inherent molecular spin-inversion barrier. Although recent advances have shown the viability of lanthanide-containing complexes in generating large barriers, weak or non-existent magnetic exchange coupling allows fast relaxation pathways that mitigate the full potential of these species. Here, we show that the diffuse spin of an N23− radical bridge can lead to exceptionally strong magnetic exchange in dinuclear Ln(III) (Ln = Gd, Dy) complexes. The Gd(III) congener exhibits the strongest magnetic coupling yet observed for that ion, while incorporation of the high-anisotropy Dy(III) ion gives rise to a molecule with a record magnetic blocking temperature of 8.3 K at a sweep rate of 0.08 T s−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the centrosymmetric [{[(Me3Si)2N]2Gd(THF)}2(μ-η2:η2-N2)] anion, as crystallized in compound 1.
Figure 2: Variable-temperature molar magnetic susceptibility data (χM).
Figure 3: Dynamic magnetic data for 2.
Figure 4: Magnetization (M) versus d.c. magnetic field (H) for 2.

Similar content being viewed by others

References

  1. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  2. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  3. Waldmann, O. A criterion for the anisotropy barrier in single-molecule magnets. Inorg. Chem. 46, 10035–10037 (2007).

    Article  CAS  Google Scholar 

  4. Neese, F. & Pantazis, D. A. What is not required to make a single molecule magnet. Faraday Discuss. 148, 229–238 (2011).

    Article  CAS  Google Scholar 

  5. Ako, A. M. et al. A ferromagnetically coupled Mn19 aggregate with a record S = 83/2 ground spin state. Angew. Chem. Int. Ed. 45, 4926–4929 (2006).

    Article  CAS  Google Scholar 

  6. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  7. Stamp, P. C. E. & Gaita-Ariño, A. Spin-based quantum computers made by chemistry: hows and whys. J. Mater. Chem. 19, 1718–1730 (2009).

    Article  CAS  Google Scholar 

  8. Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mater. 8, 194–197 (2009).

    Article  CAS  Google Scholar 

  9. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  10. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  Google Scholar 

  11. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S.-y. & Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 125, 8694–8695 (2003).

    Article  CAS  Google Scholar 

  12. Ishikawa, N., Sugita, M., Ishikawa, T., Koshihara, S. & Kaizu, Y. Mononuclear lanthanide complexes with a long magnetization relaxation time at high temperatures: a new category of magnets at the single-molecular level. J. Phys. Chem. B 108, 11265–11271 (2004).

    Article  CAS  Google Scholar 

  13. Rinehart, J. D. & Long, J. R. Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. J. Am. Chem. Soc. 131, 12558–12559 (2009).

    Article  CAS  Google Scholar 

  14. Freedman, D. E. et al. Slow magnetic relaxation in a high-spin iron(II) complex. J. Am. Chem. Soc. 132, 1224–1225 (2010).

    Article  CAS  Google Scholar 

  15. Ishikawa, N., Mizuno, Y., Takamatsu, S., Ishikawa, T. & Koshihara, S.-y. Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)dysprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state. Inorg. Chem. 47, 10217–10219 (2008).

    Article  CAS  Google Scholar 

  16. AlDamen, M. A. et al. Mononuclear lanthanide single molecule magnets based on the polyoxometalates [Ln(W5O18)2]9− and [Ln(β2-SiW11O39)2]13− (LnIII = Tb, Dy, Ho, Er, Tm, and Yb). Inorg. Chem. 48, 3467–3479 (2009).

    Article  CAS  Google Scholar 

  17. Lin, P.-H. et al. A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew. Chem. Int. Ed. 48, 9489–9492 (2009).

    Article  CAS  Google Scholar 

  18. Guo, Y.-N. et al. Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior. J. Am. Chem. Soc. 132, 8538–8539 (2010).

    Article  CAS  Google Scholar 

  19. Hewitt, I. J. et al. Coupling Dy3 triangles enhances their slow magnetic relaxation. Angew. Chem. Int. Ed. 49, 6352–6356 (2010).

    Article  CAS  Google Scholar 

  20. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N. & Christou, G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002).

    Article  Google Scholar 

  21. Evans, W. J. et al. Isolation of dysprosium and yttrium complexes of a three-electron reduction product in the activation of dinitrogen, the (N2)3− radical. J. Am. Chem. Soc. 131, 11195–11202 (2009).

    Article  CAS  Google Scholar 

  22. Benelli, C. & Gatteschi, D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chem. Rev. 102, 2369–2388 (2002).

    Article  CAS  Google Scholar 

  23. Caneschi, A., Dei, A., Gatteschi, D., Sorace, L. & Vostrikova, K. Antiferromagnetic coupling in a gadolinium(III) semiquinonato complex. Angew. Chem. Int. Ed. 39, 246–248 (2000).

    Article  CAS  Google Scholar 

  24. Costes, J-P., Dahan, F. & Dupuis, A. Influence of anionic ligands (X) on the nature and magnetic properties of dinuclear LCuGdX3·nH2O complexes (LH2 standing for tetradentate Schiff base ligands deriving from 2-hydroxy-3-methoxybenzaldehyde and X being Cl, N3C2, and CF3COO). Inorg. Chem. 39, 165–168 (2000).

    Article  CAS  Google Scholar 

  25. Yoshihara, D., Karasawa, S. & Koga, N. Cyclic single-molecule magnet in heterospin system. J. Am. Chem. Soc. 130, 10460–10461 (2008).

    Article  CAS  Google Scholar 

  26. Milios, C. J. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    Article  CAS  Google Scholar 

  27. Lukens, W. W. & Walter, M. D. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method. Inorg. Chem. 49, 4458–4465 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation for support (grant no. CHE-0617063 and CHE-1010002) and T. David Harris for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.J.E. and M.F. designed and executed the synthesis and crystallographic characterization of all compounds. J.R.L. and J.D.R. planned and executed the magnetic measurements and analysed the resulting data. All authors were involved in the writing of the manuscript.

Corresponding authors

Correspondence to William J. Evans or Jeffrey R. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1282 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 24 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinehart, J., Fang, M., Evans, W. et al. Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nature Chem 3, 538–542 (2011). https://doi.org/10.1038/nchem.1063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing