Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Facile removal of stabilizer-ligands from supported gold nanoparticles

Abstract

Metal nanoparticles that comprise a few hundred to several thousand atoms have many applications in areas such as photonics, sensing, medicine and catalysis. Colloidal methods have proven particularly suitable for producing small nanoparticles with controlled morphologies and excellent catalytic properties. Ligands are necessary to stabilize nanoparticles during synthesis, but once the particles have been deposited on a substrate the presence of the ligands is detrimental for catalytic activity. Previous methods for ligand removal have typically involved thermal and oxidative treatments, which can affect the size or morphology of the particles, in turn altering their catalytic activity. Here, we report a procedure to effectively remove the ligands without affecting particle morphology, which enhances the surface exposure of the nanoparticles and their catalytic activity over a range of reactions. This may lead to developments of nanoparticles prepared by colloidal methods for applications in fields such as environmental protection and energy production.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laser Raman spectroscopy analysis of sol-immobilized catalysts and certain reference materials.
Figure 2: Representative HAADF STEM images showing that the water extraction procedure developed for removing the stabilizing PVA molecules from the immobilized supported gold nanoparticles does not significantly increase particle size or affect their morphology.
Figure 3: Effect of reflux treatment on CO oxidation using PVA-stabilized 1 wt% Au/TiO2 catalyst.

Similar content being viewed by others

References

  1. Evans, S. D., Johnson, S. R., Cheng, Y. L. & Shen, T. Vapour sensing using hybrid organic–inorganic nanostructured materials. J. Mater.Chem. 10, 183–188 (2000).

    Article  CAS  Google Scholar 

  2. Zayats, M. et al. Probing photoelectrochemical processes in Au–CdS nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 125, 16006–16014 (2003).

    Article  CAS  Google Scholar 

  3. Baschong, W. & Wrigley, N. G. Small colloidal gold conjugated to fab fragments or to immunoglobulin G as high-resolution labels for electron microscopy: a technical overview. J. Electron Microsc. Tech. 14, 313–323 (1990).

    Article  CAS  Google Scholar 

  4. Jahn, W. Review: chemical aspects of the use of gold clusters in structural biology. J. Struct. Biol. 127, 106–112 (1999).

    Article  CAS  Google Scholar 

  5. Maier, S. A. et al. Plasmonics—a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Article  CAS  Google Scholar 

  6. Novak, J. P. et al. Nonlinear optical properties of molecularly bridged nanoparticle arrays. J. Am. Chem. Soc. 122, 12029–12030 (2000).

    Article  CAS  Google Scholar 

  7. Wang, S., Sato, S. & Kimura, K. Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chem. Mater. 15, 2445–2448 (2003).

    Article  CAS  Google Scholar 

  8. Kiely, C. J., Fink, J., Brust, M., Bethell, D. & Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 396, 444–446 (1998).

    Article  CAS  Google Scholar 

  9. Schmid, G. & Simon, U. Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem. Commun. 697–710 (2005).

  10. Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  11. Sanchez, R. M. T., Ueda, A., Tanaka, K. & Haruta, M. Selective oxidation of CO in hydrogen over gold supported on manganese oxides. J. Catal. 168, 125–127 (1997).

    Article  CAS  Google Scholar 

  12. Hughes, M. D. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437, 1132–1135 (2005).

    Article  CAS  Google Scholar 

  13. Turner, M. et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454, 981–983 (2008).

    Article  CAS  Google Scholar 

  14. Abad, A., Concepcion, P., Corma, A. & Garcia, H. A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew. Chem. Int. Ed. 44, 4066–4069 (2005).

    Article  CAS  Google Scholar 

  15. Della Pina, C., Falletta, E., Prati, L. & Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 37, 2077–2095 (2008).

    Article  CAS  Google Scholar 

  16. Enache, D. I. et al. Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311, 362–365 (2006).

    Article  CAS  Google Scholar 

  17. Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009).

    Article  CAS  Google Scholar 

  18. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    Article  CAS  Google Scholar 

  19. Daniel, M. C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  20. Porta, F. & Prati, L. Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. J. Catal. 224, 397–403 (2004).

    Article  CAS  Google Scholar 

  21. Grunwaldt, J. D., Kiener, C., Wögerbauer, C. & Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via ‘size-controlled’ gold colloids. J. Catal. 181, 223–232 (1999).

    Article  CAS  Google Scholar 

  22. Grunwaldt, J. D., Maciejewski, M., Becker, O. S., Fabrizioli, P. & Baiker, A. Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation. J. Catal. 186, 458–469 (1999).

    Article  CAS  Google Scholar 

  23. Beck, A. et al. Sol derived gold–palladium bimetallic nanoparticles on TiO2: structure and catalytic activity in CO oxidation. Top. Catal. 44, 115–121 (2007).

    Article  CAS  Google Scholar 

  24. Comotti, M., Li, W.-C., Spliethoff, B. & Schüth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 128, 917–924 (2006).

    Article  CAS  Google Scholar 

  25. Tsubota, S., Nakamura, T., Tanaka, K. & Haruta, M. Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catal. Lett. 56, 131–135 (1998).

    Article  CAS  Google Scholar 

  26. Menard, L. D., Xu, F., Nuzzo, R. G. & Yang, J. C. Preparation of TiO2-supported Au nanoparticle catalysts from a Au13 cluster precursor: ligand removal using ozone exposure versus a rapid thermal treatment. J. Catal. 243, 64–73 (2006).

    Article  CAS  Google Scholar 

  27. Yin, H. et al. Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chem. Commun. 4357–4359 (2008).

  28. Wen, L. et al. Monodispersed gold nanoparticles supported on γ-Al2O3 for enhancement of low-temperature catalytic oxidation of CO. Appl. Catal. B 79, 402–409 (2008).

    Article  CAS  Google Scholar 

  29. Yin, H., Ma, Z., Chi, M. & Dai, S. Activation of dodecanethiol-capped gold catalysts for CO oxidation by treatment with KMnO4 or K2MnO4 . Catal. Lett. 136, 209–221 (2010).

    Article  CAS  Google Scholar 

  30. Hemaa, M. et al. Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer electrolyte. Spectrochimica Acta A 75, 474–478 (2010).

    Article  Google Scholar 

  31. Yang, W., Kim, M. H. & Ham, S. W. Effect of calcination temperature on the low-temperature oxidation of CO over CoOx/TiO2 catalysts. Catal. Today 123, 1–4, 94–103 (2007).

    Article  Google Scholar 

  32. Tsubota, S., Cunningham, D., Bando, Y. & Haruta, M. CO oxidation over gold supported on TiO2 . Stud. Surf. Sci. Catal. 77, 325–328 (1993).

    Article  CAS  Google Scholar 

  33. Boccuzzi, F. & Chiorino, A. Chemisorption and catalytic properties of gold nanoparticles on different oxides: electronic or structural effects? Stud. Surf. Sci. Catal. 140, 77–86 (2001).

    Article  CAS  Google Scholar 

  34. Janssens, T. V. W. et al. Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Top. Catal. 44, 1–2 (2007).

    Article  Google Scholar 

  35. Bianchi, C. L., Canton, P., Dimitratos, N., Porta, F. & Prati, L. Selective oxidation of glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today 102, 203–212 (2005).

    Article  Google Scholar 

  36. Dimitratos, N. et al. Solvent-free oxidation of benzyl alcohol using Au–Pd catalysts prepared by sol immobilization. Phys. Chem. Chem. Phys. 11, 5142–5153 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the UK Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Contributions

S.W., G.L.B. and L.K. prepared and tested catalysts under the supervision of J.A.L., L.S., N.D. and P.M. TEM measurements were carried out by R.T. under the supervision of C.J.K. GC-MS analysis was provided by R.L.J. XPS measurements were made by A.F.C. G.J.H. directed the research and all authors contributed to the analysis of the data and the writing of the manuscript.

Corresponding author

Correspondence to Graham J. Hutchings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Sanchez, J., Dimitratos, N., Hammond, C. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chem 3, 551–556 (2011). https://doi.org/10.1038/nchem.1066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing