Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Core@shell bimetallic nanoparticle synthesis via anion coordination

Abstract

Core@shell structured bimetallic nanoparticles are currently of immense interest due to their unique electronic, optical and catalytic properties. However, their synthesis is non-trivial. We report a new supramolecular route for the synthesis of core@shell nanoparticles, based on an anion coordination protocol—the first to function by binding the shell metal to the surface of the pre-formed primary metal core before reduction. The resultant gold/palladium and platinum/palladium core@shell nanoparticles have been characterized by aberration-corrected scanning transmission electron microscopy (as well as other techniques), giving striking atomic-resolution images of the core@shell architecture, and the unique catalytic properties of the structured nanoparticles have been demonstrated in a remarkable improvement of the selective production of industrially valuable chloroaniline from chloronitrobenzene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrammatic representation of anion coordination synthetic strategy for core@shell bimetallic nanoparticles.
Figure 2: AC-HAADF-STEM images of bimetallic nanoparticles on carbon.
Figure 3: Reduction of 2-chloronitrobenzene (8) using Au/Pd bimetallic nanoparticles.

Similar content being viewed by others

References

  1. Daniel, M.-C. & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004).

    Article  CAS  Google Scholar 

  2. Yao, T. et al. Insights into initial kinetic nucleation of gold nanocrystals. J. Am. Chem. Soc. 132, 7696–7701 (2010).

    Google Scholar 

  3. Templeton, A. C., Wuelfing, W. P. & Murray, R. W. Monolayer-protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  4. Coskun, A. et al. Molecular-mechanical switching at the nanoparticle–solvent interface: practice and theory. J. Am. Chem. Soc. 132, 4310–4320 (2010).

    Article  CAS  Google Scholar 

  5. Zeng, Q. et al. Host–guest directed assembly of gold nanoparticle arrays. Langmuir 26, 1325–1333 (2009).

    Article  Google Scholar 

  6. Wang, Z. & Ma, L. Gold nanoparticle probes. Coord. Chem. Rev. 253, 1607–1618 (2009).

    Article  CAS  Google Scholar 

  7. Sessler, J. L., Gale, P. A. & Cho, W.-S. Anion Receptor Chemistry (Royal Society of Chemistry, 2006).

    Google Scholar 

  8. Pedro, M. & Jaïrton, D. Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J. 13, 32–39 (2007).

    Article  Google Scholar 

  9. Zhang, K. et al. Enhanced optical responses of Au@Pd core/shell nanobars. Langmuir 25, 1162–1168 (2009).

    Article  CAS  Google Scholar 

  10. Sobal, N. S. et al. Synthesis and structure of colloidal bimetallic nanocrystals: the non-alloying system Ag/Co. Nano Lett. 2, 621–624 (2002).

    Article  CAS  Google Scholar 

  11. Moskovits, M., Srnova-Sloufova, I. & Vlckova, B. Bimetallic Ag–Au nanoparticles: extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435–10446 (2002).

    Article  CAS  Google Scholar 

  12. Kobayashi, H., Yamauchi, M., Ikeda, R. & Kitagawa, H. Atomic-level Pd–Au alloying and controllable hydrogen-absorption properties in size-controlled nanoparticles synthesized by hydrogen reduction. Chem. Commun. 4806–4808 (2009).

  13. Alayoglu, S. & Eichhorn, B. Rh@Pt bimetallic catalysts: synthesis, characterization, and catalysis of core@shell, alloy, and monometallic nanoparticles. J. Am. Chem. Soc. 130, 17479–17486 (2008).

    Article  CAS  Google Scholar 

  14. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core-–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Mater. 7, 333–338 (2008).

    Article  CAS  Google Scholar 

  15. Enache, D. I. et al. Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/ TiO2 catalysts. Science 311, 362–365 (2006).

    Article  CAS  Google Scholar 

  16. Park, J. H. & Chung, Y. K. Cobalt–rhodium heterobimetallic nanoparticle-catalyzed reactions. Dalton Trans. 2369–2378 (2008).

  17. Toshima, N., Harada, M., Yamazaki, Y. & Asakura, K. Catalytic activity and structural analysis of polymer-protected gold–palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride. J. Phys. Chem. 96, 9927–9933 (1992).

    Article  CAS  Google Scholar 

  18. Edwards, J. K. & Hutchings, G. J. Palladium and gold–palladium catalysts for the direct synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 47, 9192–9198 (2008).

    Article  CAS  Google Scholar 

  19. Schmid, G., West, H., Mehles, H. & Lehnert, A. Hydrosilation reactions catalyzed by supported bimetallic colloids. Inorg. Chem. 36, 891–895 (1997).

    Article  CAS  Google Scholar 

  20. Zhang, J. et al. Platinum monolayer on non-noble metal@noble metal core@shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 109, 22701–22704 (2005).

    Article  CAS  Google Scholar 

  21. Harada, M., Asakura, K. & Toshima, N. Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride. J. Phys. Chem. 97, 5103–5114 (1993).

    Article  CAS  Google Scholar 

  22. Yu, H., Gibbons, P. C., Kelton, K. F. & Buhro, W. E. Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123, 9198–9199 (2001).

    Article  CAS  Google Scholar 

  23. Toshima, N. et al. Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters. Eur. Phys. J. D 16, 209–212 (2001).

    Article  CAS  Google Scholar 

  24. Turkevich, J. & Kim, G. Palladium: preparation and catalytic properties of particles of uniform size. Science 169, 873–879 (1970).

    Article  CAS  Google Scholar 

  25. Brown, K. R. & Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14, 726–728 (1998).

    Article  CAS  Google Scholar 

  26. Lee, W.-R. et al. Redox-transmetalation process as a generalized synthetic strategy for core@shell magnetic nanoparticles. J. Am. Chem. Soc. 127, 16090–16097 (2005).

    Article  CAS  Google Scholar 

  27. Xie, W. et al. Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold–silver core–shell nanoparticles. Chem. Commun. 5263–5265 (2009).

  28. Mallik, K., Mandal, M., Pradhan, N. & Pal, T. Seed mediated formation of bimetallic nanoparticles by UV irradiation: a photochemical approach for the preparation of core@shell type structures. Nano Lett. 1, 319–322 (2001).

    Article  CAS  Google Scholar 

  29. Lee, Y. W., Kim, M., Kim, Z. H. & Han, S. W. One-step synthesis of Au@Pd core@shell nanooctahedron. J. Am. Chem. Soc. 131, 17036–17037 (2009).

    Article  CAS  Google Scholar 

  30. Mizukoshi, Y. et al. Characterization and catalytic activity of core@shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B 104, 6028–6032 (2000).

    Article  CAS  Google Scholar 

  31. Yan, J.-M. et al. One-step seeding growth of magnetically recyclable Au@Co core@shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 132, 5326–5327 (2010).

    Article  CAS  Google Scholar 

  32. Mayrhofer, K. J. J. et al. Adsorbate-induced surface segregation for core–shell nanocatalysts. Angew. Chem. Int. Ed. 48, 3529–3531 (2009).

    Article  CAS  Google Scholar 

  33. Astruc, D., Boisselier, E. & Ornelas, C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem. Rev. 110, 1857–1959 (2010).

    Article  CAS  Google Scholar 

  34. Labande, A., Ruiz, J. & Astruc, D. Supramolecular gold nanoparticles for the redox recognition of oxoanions: syntheses, titrations, stereoelectronic effects, and selectivity. J. Am. Chem. Soc. 124, 1782–1789 (2002).

    Article  CAS  Google Scholar 

  35. Watanabe, S. et al. Enhanced optical sensing of anions with amide-functionalized gold nanoparticles. Chem. Commun. 2866–2867 (2002).

  36. Brust, M. et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994).

    Article  CAS  Google Scholar 

  37. Wagner, C. D. et al. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf. Interface Anal. 3, 211–225 (1981).

    Article  CAS  Google Scholar 

  38. Zeng, J., Yang, J., Lee, J. Y. & Zhou, W. Preparation of carbon-supported core@shell Au@Pt nanoparticles for methanol oxidation reaction: the promotional effect of the Au core. J. Phys. Chem. B 110, 24606–24611 (2006).

    Article  CAS  Google Scholar 

  39. Liu, H., Mao, G. & Meng, S. Preparation and characterization of the polymer-protected palladium-gold colloidal bimetallic catalysts. J. Mol. Catal. 74, 275–284 (1992).

    Article  CAS  Google Scholar 

  40. Weir, M. G., Knecht, M. R., Frenkel, A. I. & Crooks, R. M. Structural analysis of PdAu dendrimer-encapsulated bimetallic nanoparticles. Langmuir 26, 1137–1146 (2009).

    Article  Google Scholar 

  41. Sanchez, S. I., Small, M. W., Zuo, J.-M. & Nuzzo, R. G. Structural characterization of Pt@Pd and Pd@Pt core@shell nanoclusters at atomic resolution. J. Am. Chem. Soc. 131, 8683–8689 (2009).

    Article  CAS  Google Scholar 

  42. Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302–1305 (2009).

    Article  CAS  Google Scholar 

  43. Jiang, L., Gu, H., Xu, X. & Yan, X. Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals. J. Mol. Catal. A 310, 144–149 (2009).

    Article  CAS  Google Scholar 

  44. Liu, H. et al. An excellent Pd-based nanocomposite catalyst for the selective hydrogenation of para-chloronitrobenzene. J. Mol. Catal. A 308, 79–86 (2009).

    Article  CAS  Google Scholar 

  45. Cárdenas-Lizana, F. et al. Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au. J. Catal. 262, 235–243 (2009).

    Article  Google Scholar 

  46. Kratky, V. et al. Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes. Appl. Catal. A 235, 225–231 (2002).

    Article  CAS  Google Scholar 

  47. Meng, X. et al. Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: significance of molecular interactions. J. Catal. 269, 131–139 (2010).

    Article  CAS  Google Scholar 

  48. Liu, S.-J. et al. Controllable synthesis of VSB-5 microspheres and microrods: growth mechanism and selective hydrogenation catalysis. Chem. Eur. J. 14, 4074–4081 (2008).

    Article  CAS  Google Scholar 

  49. Li, H. et al. Ni–B amorphous alloy deposited on an aminopropyl and methyl co-functionalized SBA-15 as a highly active catalyst for chloronitrobenzene hydrogenation. J. Mol. Catal. A 307, 105–114 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.J.S. thanks Johnson Matthey and the Engineering and Physical Sciences Research Council for a CASE Studentship. ICP-MS analysis was conducted by G. Nnorom-Junior and J. McNaught, XPS by R.A.P. Smith, and TEM by G. Goodlet, at Johnson Matthey Technology Centre. We would also like to thank R.E. Palmer for allowing the use of the aberration corrected STEM facilities at the University of Birmingham, UK.

Author information

Authors and Affiliations

Authors

Contributions

P.D.B. and J.C. conceived the project. P.D.B., J.C. and C.J.S. designed the experiments. C.J.S. conducted the experiments. D.O. performed aberration corrected-high-angle annular dark field-scanning tunnelling electron microscopy. All authors contributed to analysis of the data. C.J.S., J.C. and P.D.B. wrote the paper.

Corresponding author

Correspondence to Paul D. Beer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6993 kb)

Supplementary information

Crystallographic data for TBA-AuCl4 (CIF 21 kb)

Supplementary information

Crystallographic data for TBA2-Pd2Cl6 (CIF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serpell, C., Cookson, J., Ozkaya, D. et al. Core@shell bimetallic nanoparticle synthesis via anion coordination. Nature Chem 3, 478–483 (2011). https://doi.org/10.1038/nchem.1030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1030

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing