Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-threshold H/D exchange in CD3CHO photodissociation

Abstract

Measuring the isotopic abundance of hydrogen versus deuterium atoms is a key method for interrogating reaction pathways in chemistry. H/D ‘scrambling’ is the intramolecular rearrangement of labile isotopes of hydrogen atoms and when it occurs through unanticipated pathways can complicate the interpretation of such experiments. Here, we investigate H/D scrambling in acetaldehyde at the energetic threshold for breaking the formyl C–H bond and reveal an unexpected unimolecular mechanism. Laser photolysis experiments of CD3CHO show that up to 17% of the products have undergone H/D exchange to give CD2H + DCO. Transition-state theory calculations reveal that the dominant mechanism involves four sequential H- or D-shifts to form CD2HCDO, which then undergoes conventional C–C bond cleavage. At the lowest energy the molecule undergoes an average of 20 H- or D-shifts before products are formed, evincing significant scrambling of H and D atoms. Analogous photochemically induced isomerizations and isotope scrambling are probably important in both atmospheric chemistry and combustion reactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changing product yield of DCO for different excitation energies.
Figure 2: Percentage H/D exchange products in the photodissociation of CD3CHO:
Figure 3: Schematic of the critical points on the global PES for C2D3HO.

Similar content being viewed by others

References

  1. Urey, H. C., Brickwedde, F. G. & Murphy, G. M. A hydrogen isotope of mass 2. Phys. Rev. 39, 164–165 (1932).

    Article  CAS  Google Scholar 

  2. Jefferts, K. B., Penzias, A. A. & Wilson, R. W. Deuterium in the Orion nebula. Astrophys. J. 179, L57–L59 (1973).

    Article  Google Scholar 

  3. Gourier, D. et al. Extreme deuterium enrichment of organic radicals in the Orgueil meteorite: revisiting the interstellar interpretation? Geochim. Cosmochim. Acta 72, 1914–1923 (2008).

    Article  CAS  Google Scholar 

  4. Feng, X. H. & Epstein, S. Climatic implications of an 8000-year hydrogen isotope time-series from bristlecone-pine trees. Science 265, 1079–1081 (1994).

    Article  CAS  Google Scholar 

  5. Zhang, X. N., Gillespie, A. L. & Sessions, A. L. Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc. Natl Acad. Sci. USA 106, 12580–12586 (2009).

    Article  Google Scholar 

  6. Kaye, J. A. in Isotope Effects in Gas-Phase Chemistry (ed. Kaye, J. A.) Ch. 1, 1–14 (American Chemical Society, 1992).

    Google Scholar 

  7. Konermann, L., Tong, X. & Pan, Y. Protein structure and dynamics studied by mass spectrometry: H/D exchange, hydroxyl radical labeling, and related approaches. J. Mass Spectrom. 43, 1021–1036 (2008).

    Article  CAS  Google Scholar 

  8. Shirota, T., Mano, N., Tsuge, M. & Hoshina, K. Formation of H3O+ from alcohols and ethers induced by intense laser fields. Rapid Comm. Mass Spec. 24, 679–686 (2010).

    Article  CAS  Google Scholar 

  9. van Raalte, D. & Harrison, A. G. Energetics and mechanism of hydronium ion formation by electron impact. Can. J. Chem. 41, 3118–3125 (1963).

    Article  CAS  Google Scholar 

  10. Qadiri, R. H., Feltham, E. J., Nahler, N. H., Garcia, R. P. & Ashfold, M. N. R. Propyne and allene photolysis at 193.3 nm and at 121.6 nm. J. Chem. Phys. 119, 12842–12851 (2003).

    Article  CAS  Google Scholar 

  11. Ganot, Y., Rosenwaks, S. & Bar, I. H and D release in 243.1 nm photolysis of vibrationally excited 3ν1, 4ν1, and 4νCD overtones of propyne-d3 . J. Chem. Phys. 120, 8600–8607 (2004).

    Article  CAS  Google Scholar 

  12. Robinson, J. C., Sveum, N. E., Goncher, S. J. & Neumark, D. M. Photofragment translational spectroscopy of allene, propyne and propyne-d3 at 193 nm. Mol. Phys. 103, 1765–1783 (2005).

    Article  CAS  Google Scholar 

  13. Lin, C-K. et al. Photoisomerization and photodissociation of toluene in a molecular beam. J. Am. Chem. Soc. 124, 4068–4075 (2002).

    Article  CAS  Google Scholar 

  14. Huang, C-L., Jiang, J-C., Lee, Y. T. & Ni, C-K. Photoisomerization and photodissociation of m-xylene in a molecular beam. J. Phys. Chem. A 107, 4019–4024 (2003).

    Article  CAS  Google Scholar 

  15. Lee, S-H., Lee, Y. T. & Yang, X. Dynamics of photodissociation of ethylene and its isotopomers at 157 nm: branching ratios and kinetic-energy distributions. J. Chem. Phys. 120, 10983–10991 (2004).

    Article  CAS  Google Scholar 

  16. Lee, S-H., Lee, Y. T. & Yang, X. Dynamics of photodissociation of 3,3,3-d3-propene at 157 nm: site effect and hydrogen migration. J. Chem. Phys. 120, 10992–10999 (2004).

    Article  CAS  Google Scholar 

  17. Deyerl, H-J., Fischer, I. & Chen, P. Photodissociation dynamics of the allyl radical. J. Chem. Phys. 110, 1450–1461 (1999).

    Article  CAS  Google Scholar 

  18. Deyerl, H-J., Fischer, I. & Chen, P. Photodissociation dynamics of the propargyl radical. J. Chem. Phys. 111, 3441–3448 (1999).

    Article  CAS  Google Scholar 

  19. Schinke, R. Photodissociation Dynamics (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  20. Reid, S. A. & Reisler, H. Experimental studies of resonances in unimolecular decomposition. Annu. Rev. Phys. Chem. 47, 495–525 (1996).

    Article  CAS  Google Scholar 

  21. Townsend, D. et al. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306, 1158–1161 (2004).

    Article  CAS  Google Scholar 

  22. Houston, P. L. & Kable, S. H. Photodissociation of acetaldehyde as a second example of the roaming mechanism. Proc. Natl Acad. Sci. USA 103, 16079–16082 (2006).

    Article  CAS  Google Scholar 

  23. Heazlewood, B. R. et al. Roaming dynamics: the dominant pathway to molecular products in acetaldehyde photodissociation. Proc. Natl Acad. Sci. USA 105, 12719–12724 (2008).

    Article  CAS  Google Scholar 

  24. Suits, A. G. Roaming atoms and radicals: a new mechanism in molecular dissociation. Acc. Chem. Res. 41, 873–881 (2008).

    Article  CAS  Google Scholar 

  25. Harding, L. B., Georgievskii, Y. & Klippenstein, S. J. Roaming radical kinetics in the decomposition of acetaldehyde. J. Phys. Chem. A 114, 765–777 (2010).

    Article  CAS  Google Scholar 

  26. Shepler, B. C., Braams, B. J. & Bowman, J. M. Quasiclassical trajectory calculations of acetaldehyde dissociation on a global potential energy surface indicate significant non-transition state dynamics. J. Phys. Chem. A 111, 8282–8285 (2007).

    Article  CAS  Google Scholar 

  27. Sivaramakrishnan, R., Michael, J. V. & Klippenstein, S. J. Direct observation of roaming radicals in the thermal decomposition of acetaldehyde. J. Phys. Chem. A 114, 755–764 (2010).

    Article  CAS  Google Scholar 

  28. Heazlewood, B. R., Rowling, S. J., Maccarone, A. T., Jordan, M. J. T. & Kable, S. H. Photochemical formation of HCO and CH3 on the ground S0 (1A′) state of CH3CHO. J. Chem. Phys. 130, 054310 (2009).

    Article  Google Scholar 

  29. Thompson, K. C., Crittenden, D. L., Kable, S. H. & Jordan, M. J. T. A classical trajectory study of the photodissociation dynamics of T1 acetaldehyde: the transition from impulsive to statistical dynamics. J. Chem. Phys. 124, 044302 (2006).

    Article  Google Scholar 

  30. Gherman, B. F., Friesner, R. A., Wong, T-H., Min, Z. & Bersohn, R. Photodissociation of acetaldehyde: the CH4 + CO channel. J. Chem. Phys. 114, 6128–6133 (2001).

    Article  CAS  Google Scholar 

  31. Lee, S-H. & Chen, I-C. Axis switching in the [Btilde]2A′→X~2A′ transition of HCO and fluorescence lifetimes of the [Btilde]2A′(0,0,0) rotational states. J. Chem. Phys. 105, 2583–2590 (1996).

    Article  CAS  Google Scholar 

  32. Gripp, J., Kuczmann, A., Stöck, C., Temps, F. & Tröllsch, A. The ([Btilde]2A′→X~2A′) laser induced fluorescence excitation spectrum of DCO in a supersonic jet expansion. Phys. Chem. Chem. Phys. 2, 1653–1657 (2000).

    Article  CAS  Google Scholar 

  33. Rowling, S. J. Competing Electronic States in Formaldehyde Dissociation, Ch. 7. PhD thesis, Univ. Sydney (2010).

    Google Scholar 

  34. Yadav, J. S. & Goddard, J. D. Acetaldehyde photochemistry – the radical and molecular dissociations. J. Chem. Phys. 84, 2682–2690 (1986).

    Article  CAS  Google Scholar 

  35. Amaral, G. A., Arregui, A., Rubio-Lago, L., Rodríguez, J. D. & Bañares, L. Imaging the radical channel in acetaldehyde photodissociation: competing mechanisms at energies close to the triplet exit barrier. J. Chem. Phys. 133, 064303 (2010).

    Article  CAS  Google Scholar 

  36. Lee, S-H. & Chen, I-C. Photofragments CH3(X~2A2″)+HCO(X~2A′) from acetaldehyde: distributions of rotational states and preferential population of K doublets of HCO. J. Chem. Phys. 105, 4597–4604 (1996).

    Article  CAS  Google Scholar 

  37. Yang, X., Maeda, S. & Ohno, K. Insight into global reaction mechanism of [C2, H4, O] system from ab initio calculations by the scaled hypersphere search method. J. Phys. Chem. A 111, 5099–5110 (2007).

    Article  CAS  Google Scholar 

  38. Nguyen, T. L., Vereecken, L., Hou, X. J., Nguyen, M. T. & Peeters, J. Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4 (X~1Ag): a comprehensive theoretical study. J. Phys. Chem. A 109, 7489–7499 (2005).

    Article  CAS  Google Scholar 

  39. Harding, L. B., Klippenstein, S. J. & Jasper, A. W. Ab initio methods for reactive potential surfaces. Phys. Chem. Chem. Phys. 9, 4055–4070 (2007).

    Article  CAS  Google Scholar 

  40. Finlayson-Pitts, B. J. and Pitts, J. N. Jr Chemistry of the Upper and Lower Atmosphere – Theory, Experiments, and Applications (Academic Press, 1999).

    Google Scholar 

  41. Terentis, A. C., Stone, M. & Kable, S. H. Dynamics of acetaldehyde dissociation at 308 nm: rotational (N, K a) and translational distributions of the HCO photoproduct. J. Phys. Chem. 98, 10802–10808 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Australian Research Council (grant DP1094559). Parts of this research were undertaken on the NCI Computational Infrastructure National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government. B.R.H. is the recipient of a University of Sydney Postgraduate Award stipend. L.B.H. and S.J.K. are supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC02-06CH11357. D.L.O. is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the National Nuclear Security Administration under contract No. DE-AC04-94-AL85000. We acknowledge fruitful discussions about this work with J. Bowman at Emory University.

Author information

Authors and Affiliations

Authors

Contributions

S.H.K. and M.J.T.J. directed the project. S.H.K. was responsible for experimental aspects of the project and M.J.T.J. led the theoretical aspects of the project. A.T.M., D.U.A. and B.R.H. conducted experiments and data analysis. Theoretical calculations were a joint effort of B.R.H., M.J.T.J., D.L.O., L.B.H. and S.J.K. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Meredith J. T. Jordan or Scott H. Kable.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 779 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heazlewood, B., Maccarone, A., Andrews, D. et al. Near-threshold H/D exchange in CD3CHO photodissociation. Nature Chem 3, 443–448 (2011). https://doi.org/10.1038/nchem.1052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing