Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A delocalized arene-bridged diuranium single-molecule magnet

Abstract

Single-molecule magnets (SMMs) are compounds that, below a blocking temperature, exhibit stable magnetization purely of molecular origin, and not caused by long-range ordering of magnetic moments in the bulk. They thus show promise for applications such as data storage of ultra-high density. The stability of the magnetization increases with increasing ground-state spin and magnetic anisotropy. Transition-metal SMMs typically possess high-spin ground states, but insufficient magnetic anisotropies. Lanthanide SMMs exhibit large magnetic anisotropies, but building high-spin ground states is difficult because they tend to form ionic bonds that limit magnetic exchange coupling. In contrast, the significant covalent bonding and large spin–orbit contributions associated with uranium are particularly attractive for the development of improved SMMs. Here we report a delocalized arene-bridged diuranium SMM. This study demonstrates that arene-bridged polyuranium clusters can exhibit SMM behaviour without relying on the superexchange coupling of spins. This approach may lead to increased blocking temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and structures of 1–3.
Figure 2: Synthesis and structures of 4 and 5.
Figure 3: Synthesis of 6 and 7.
Figure 4: Ultraviolet/visible/near infrared electronic absorption spectra of 2–7 and [U(I)3(THF)4] in THF solution.
Figure 5: The top six occupied α-spin Kohn–Sham molecular orbitals of 5.
Figure 6: Magnetic data for 5.

Similar content being viewed by others

References

  1. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  2. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

  3. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N. & Christou, G. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002).

    Article  Google Scholar 

  4. Schelter, E. J., Prosvirin, A. V. & Dunbar, K. R. Molecular cube of Re-II and Mn-II that exhibits single-molecule magnetism. J. Am. Chem. Soc. 126, 15004–15005 (2004).

    Article  CAS  Google Scholar 

  5. Manriquez, J. M., Yee, G. T., McLean, R. S., Epstein, A. J. & Miller, J. S. A room-temperature molecular/organic-based magnet. Science 252, 1415–1417 (1991).

    Article  CAS  Google Scholar 

  6. Powell, A. K. et al. Synthesis, structures, and magnetic properties of Fe-2, Fe-17, and Fe-19 oxo-bridged iron clusters – the stabilization of high ground-state spins by cluster aggregates. J. Am. Chem. Soc. 117, 2491–2502 (1995).

    Article  CAS  Google Scholar 

  7. Milios, C. J. et al. A record anisotropy barrier for a single-molecule magnet. J. Am. Chem. Soc. 129, 2754–2755 (2007).

    Article  CAS  Google Scholar 

  8. Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. Single-molecule magnets. MRS Bull. 25, 66–71 (2000).

    Article  CAS  Google Scholar 

  9. Leuenberger, M. N. & Loss, D. Quantum computing in molecular systems. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  10. Ardavan, A. et al. Will spin-relaxation times in molecular magnets permit quantum information processing? Phys. Rev. Lett. 98, 057201 (2007).

    Article  Google Scholar 

  11. Winpenny, R. E. P. Quantum information processing using molecular nanomagnets as qubits. Angew. Chem. Int. Ed. 47, 7992–7994 (2008).

    Article  CAS  Google Scholar 

  12. Manoli, M. et al. A ferromagnetic mixed-valent Mn supertetrahedron: towards low-temperature magnetic refrigeration with molecular clusters. Angew. Chem. Int. Ed. 46, 4456–4460 (2007).

    Article  CAS  Google Scholar 

  13. Evangelisti, M. & Brechin, E. K. Recipes for enhanced molecular cooling. Dalton Trans. 39, 4672–4676 (2010).

    Article  CAS  Google Scholar 

  14. Aromi, G. & Brechin, E. K. Synthesis of 3d metallic single-molecule magnets. Struct. Bonding 122, 1–67 (2006).

    Article  CAS  Google Scholar 

  15. Rinehart, J. D., Harris, T. D., Kozimor, S. A., Bartlett, B. M. & Long, J. R. Magnetic exchange coupling in actinide-containing molecules. Inorg. Chem. 48, 3382–3395 (2009).

    Article  CAS  Google Scholar 

  16. Sessoli, R. & Powell, A. K. Strategies towards single molecule magnets based on lanthanide ions. Coord. Chem. Rev. 253, 2328–2341 (2009).

    Article  CAS  Google Scholar 

  17. Lin, P.-H. et al. A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier. Angew. Chem. Int. Ed. 48, 9489–9492 (2009).

    Article  CAS  Google Scholar 

  18. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Nuclear spin driven quantum tunneling of magnetization in a new lanthanide single-molecule magnet: bis(phthalocyaninato)holmium anion. J. Am. Chem. Soc. 127, 3650–3651 (2005).

    Article  CAS  Google Scholar 

  19. Ishikawa, N., Sugita, M. & Wernsdorfer, W. Quantum tunneling of magnetization in lanthanide single-molecule magnets: bis(phthalocyaninato)terbium and bis(phthalocyaninato)dysprosium anions. Angew. Chem. Int. Ed. 44, 2931–2935 (2005).

    Article  CAS  Google Scholar 

  20. Layfield, R. A. et al. Influence of the N-bridging ligand on magnetic relaxation in an organometallic dysprosium single-molecule magnet. Chem. Eur. J. 16, 4442–4446 (2010).

    Article  CAS  Google Scholar 

  21. Newell, B. S., Rappé, A. K. & Shores, M. P. Experimental evidence for magnetic exchange in di- and trinuclear uranium(IV) ethynylbenzene complexes. Inorg. Chem. 49, 1595–1606 (2010).

    Article  CAS  Google Scholar 

  22. Kozimor, S. A., Bartlett, B. M., Rinehart, J. D. & Long, J. R. Magnetic exchange coupling in chloride-bridged 5f–3d heterometallic complexes generated via insertion into a uranium(IV) dimethylpyrazolate dimer. J. Am. Chem. Soc. 129, 10672–10674 (2007).

    Article  CAS  Google Scholar 

  23. Rosen, R. K., Andersen, R. A. & Edelstein, N. M. [(MeC5H4)3U]2[μ-1,4-N2C6H4]: a bimetallic molecule with antiferromagnetic coupling between the uranium centers. J. Am. Chem. Soc. 112, 4588–4590 (1990).

    Article  CAS  Google Scholar 

  24. Salmon, L., Thuéry, P., Rivière E., Girerd, J.-J. & Ephritikhine, M. Structure and magnetism of the first strictly dinuclear compound containing paramagnetic 3d and 5f metal ions. Major influence of the CuII ion coordination on the exchange CuII–UIV interaction. Chem. Commun. 762–763 (2003).

  25. Kiplinger, J. L. et al. Actinide-mediated cyclization of 1,2,4,5-tetracyanobenzene: synthesis and characterization of self-assembled trinuclear thorium and uranium macrocycles. Angew. Chem. Int. Ed. 45, 2036–2041 (2006).

    Article  CAS  Google Scholar 

  26. Schelter, E. J. et al. Mixed valency in a uranium multimetallic complex. Angew. Chem. Int. Ed. 47, 2933–2996 (2008).

    Article  Google Scholar 

  27. Spencer, L. P. et al. Cation–cation interactions, magnetic communication, and reactivity of the pentavalent uranium ion [U(NtBu)2]+. Angew. Chem. Int. Ed. 48, 3795–3798 (2009).

    Article  CAS  Google Scholar 

  28. Arnold, P. L. et al. Synthesis of bimetallic uranium and neptunium complexes of a binucleating macrocycle and determination of the solid-state structure by magnetic analysis. Inorg. Chem. 49, 5341–5343 (2010).

    Article  CAS  Google Scholar 

  29. Magnani, N. et al. Superexchange coupling and slow magnetic relaxation in a transuranium polymetallic complex. Phys. Rev. Lett. 104, 197202 (2010).

    Article  CAS  Google Scholar 

  30. Nocton, G., Horeglad, P., Pécaut, J. & Mazzanti, M. Polynuclear cation–cation complexes of pentavalent uranyl: relating stability and magnetic properties to structure. J. Am. Chem. Soc. 130, 16633–16645 (2008).

    Article  CAS  Google Scholar 

  31. Mougel, V., Horeglad, P., Nocton, G., Pécaut, J. & Mazzanti, M. Stable pentavalent uranyl species and selective assembly of a polymetallic mixed-valent uranyl complex by cation–cation interactions. Angew. Chem. Int. Ed. 48, 8477–8480 (2009).

    Article  CAS  Google Scholar 

  32. Rinehart, J. D. & Long, J. R. Slow magnetic relaxation in a trigonal prismatic uranium(III) complex. J. Am. Chem. Soc. 131, 12558–12559 (2009).

    Article  CAS  Google Scholar 

  33. Rinehart, J. D., Meihaus, K. R. & Long, J. R. Observation of secondary slow relaxation process for the field-induced single-molecule magnet U(H2BPz2)3 . J. Am. Chem. Soc. 132, 7572–7573 (2010).

    Article  CAS  Google Scholar 

  34. Cooper, O. J., McMaster, J., Lewis, W., Blake, A. J. & Liddle, S. T. Synthesis and structure of [U{C(PPh2NMes)2}2] (Mes=2,4,6-Me3C6H2): a homoleptic uranium bis(carbene) complex with two formal U=C double bonds. Dalton Trans. 39, 5074–5076 (2010).

    Article  CAS  Google Scholar 

  35. Ong, C. M. & Stephan, D. W. Lithiations of bis-diphenyl-N-trimethylsilylphosphiniminomethane: an X-ray structure of a 1,1-dilithiomethane derivative. J. Am. Chem. Soc. 121, 2939–2940 (1999).

    Article  CAS  Google Scholar 

  36. Kasani, A., Kamalesh Babu, R. P., McDonald, R. & Cavell, R. G. [Ph2P(NSiMe3)]2CLi2: a dilithium dianionic methanide salt with an unusual Li4C2 cluster structure. Angew. Chem. Int. Ed. 38, 1483–1484 (1999).

    Article  CAS  Google Scholar 

  37. Diaconescu, P. L., Arnold, P. L., Baker, T. A., Mindiola, D. J. & Cummins, C. C. Arene-bridged diuranium complexes: inverted sandwiches supported by δ backbonding. J. Am. Chem. Soc. 122, 6108–6109 (2000).

    Article  CAS  Google Scholar 

  38. Evans, W. J., Kozimor, S. A., Ziller, J. W. & Kaltsoyannis, N. Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η6:η6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. J. Am. Chem. Soc. 126, 14533–14547 (2004).

    Article  CAS  Google Scholar 

  39. Evans, W. J., Traina, C. A. & Ziller, J. W. Synthesis of heteroleptic uranium (μ-η6:η6-C6H6)2− sandwich complexes via facile displacement of (C5Me5)1− by ligands of lower hapticity and their conversion to heteroleptic bis(imido) compounds. J. Am. Chem. Soc. 131, 17473–17481 (2009).

    Article  CAS  Google Scholar 

  40. Madelung, O. Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology (Springer, 1987).

  41. Cramer, R. E., Maynard, R. B., Paw, J. C. & Gilje, J. W. A uranium–carbon multiple bond. Crystal and molecular structure of (η5-C5H5)3UCHP(CH3)2(C6H5). J. Am. Chem. Soc. 103, 3589–3590 (1981).

    Article  CAS  Google Scholar 

  42. Cantat, T. et al. The U=C double bond: synthesis and study of uranium nucleophilic carbene complexes. J. Am. Chem. Soc. 131, 963–672 (2009).

    Article  CAS  Google Scholar 

  43. Tourneux, J.-C. et al. Easy access to uranium nucleophilic carbene complexes. Dalton Trans. 39, 2494–2496 (2010).

    Article  CAS  Google Scholar 

  44. Avens, L. R. et al. A convenient entry into trivalent actinide chemistry: synthesis and characterization of AnI3(THF)4 and An[N(SiMe3)2]3 (An=U, Np, Pu). Inorg. Chem. 33, 2248–2256 (1994).

    Article  CAS  Google Scholar 

  45. Carnall, W. T. A systematic analysis of the spectra of trivalent actinide chlorides in D3 h site symmetry. J. Chem. Phys. 96, 8713–8726 (1992).

    Article  CAS  Google Scholar 

  46. Crosswhite, H. M., Crosswhite, H., Carnall, W. T. & Paszek, A. P. Spectrum analysis of U3+:LaCl3 . J. Chem. Phys. 72, 5103–5117 (1980).

    Article  CAS  Google Scholar 

  47. Karbowiak, M. & Drożdżyński, J. Absorption spectrum analysis of uranium(III) formate. J. Alloys Compd 300–301, 329–333 (2000).

    Article  Google Scholar 

  48. Carnall, W. T. & Wybourne, B. G. Electronic energy levels of the lighter actinides: U3+, Np3+, Pu3+, Am3+, and Cm3+. J. Chem. Phys. 40, 3428–3433 (1964).

    Article  CAS  Google Scholar 

  49. Krupa, J. C. Optical excitations in lanthanide and actinide compounds. J. Alloys Compd 225, 1–10 (1995).

    Article  CAS  Google Scholar 

  50. Dereń, P. J., Karbowiak, M., Krupa, J.-C. & Drożdżyński, J. Spectroscopic properties of U3+ ions in a ZnCl2-based glass. J. Alloys Compd 275–277, 393–397 (1998).

    Article  Google Scholar 

  51. Graves, C. R. et al. Organometallic uranium(V)-imido halide complexes: from synthesis to electronic structure and bonding. J. Am. Chem. Soc. 130, 5272–5285 (2008).

    Article  CAS  Google Scholar 

  52. Morris, D. E., Da Re, R. E., Jantunen, K. C., Castro-Rodriguez, I. & Kiplinger, J. L. Trends in electronic structure and redox energetics for early-actinide pentamethylcyclopentadienyl complexes. Organometallics 23, 5142–5153 (2004).

    Article  CAS  Google Scholar 

  53. Liddle, S. T. et al. σ and π donation in an unsupported uranium–gallium bond. Angew. Chem. Int. Ed. 48, 1077–1080 (2009).

    Article  CAS  Google Scholar 

  54. Jones, E. R., Hendricks, M. E., Stone, J. A. & Karraker, D. G. Magnetic properties of the trichlorides, tribromides, and triiodides of U(III), Np(III), and Pu(III). J. Chem. Phys. 60, 2088–2094 (1974).

    Article  CAS  Google Scholar 

  55. Kahn, O. Molecular Magnetism (VCH, 1993).

  56. Yang, E. C. et al. Fast magnetization tunnelling in tetranickel(II) single-molecule magnets. Inorg. Chem. 45, 529–546 (2006).

    Article  CAS  Google Scholar 

  57. Petrukhina, M. A. Designed solvent-free approach toward organometallic networks built on directional metal–π-arene interactions. Coord. Chem. Rev. 251, 1690–1698 (2007).

    Article  CAS  Google Scholar 

  58. Akita, M. & Koike, T. Chemistry of polycarbon species: from clusters to molecular devices. Dalton Trans. 3523–3530 (2008).

Download references

Acknowledgements

We thank the European Research Council, the UK Engineering and Physical Sciences Research Council, the University of Nottingham, the National Nuclear Laboratory and the Marie Curie Intra European Fellowship (F.M.) for support and funding, and the Royal Society for the award of a University Research Fellowship (S.T.L.).

Author information

Authors and Affiliations

Authors

Contributions

D.P.M. carried out the synthesis experiments and analysed the characterization data. F.M. and J.v.S. carried out and analysed the magnetic measurements data. J.M. carried out and analysed the DFT calculations. W.L. and A.J.B. carried out the X-ray single-crystal structure analyses. S.T.L. originated the central idea, supervised the work, analysed the data and wrote the manuscript, with contributions from all the co-authors.

Corresponding author

Correspondence to Stephen T. Liddle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1004 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 27 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 41 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 28 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 22 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 33 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 23 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, D., Moro, F., McMaster, J. et al. A delocalized arene-bridged diuranium single-molecule magnet. Nature Chem 3, 454–460 (2011). https://doi.org/10.1038/nchem.1028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing