Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Platinum nanocrystals selectively shaped using facet-specific peptide sequences

Abstract

The properties of a nanocrystal are heavily influenced by its shape. Shape control of a colloidal nanocrystal is believed to be a kinetic process, with high-energy facets growing faster then vanishing, leading to nanocrystals enclosed by low-energy facets. Identifying a surfactant that can specifically bind to a particular crystal facet is critical, but has proved challenging to date. Biomolecules have exquisite specific molecular recognition properties that can be explored for the precise engineering of nanostructured materials. Here, we report the use of facet-specific peptide sequences as regulating agents for the predictable synthesis of platinum nanocrystals with selectively exposed crystal surfaces and particular shapes. The formation of platinum nanocubes and nanotetrahedrons are demonstrated with Pt-{100} and Pt-{111} binding peptides, respectively. Our studies unambiguously demonstrate the abilities of facet-selective binding peptides in determining nanocrystal shape, representing a critical step forward in the use of biomolecules for programmable synthesis of nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomimetic approach to the predictable synthesis of shaped nanocrystals.
Figure 2: Shape evolution of T7-regulated platinum cube synthesis.
Figure 3: Shape evolution of S7-regulated platinum tetrahedron synthesis.
Figure 4: Nanocrystal shape transformation by switching T7 to S7 in reactions.

Similar content being viewed by others

References

  1. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  2. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

    Article  CAS  Google Scholar 

  3. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  4. Tang, Y. & Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nature Mater. 6, 754–759 (2007).

    Article  CAS  Google Scholar 

  5. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. & El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996).

    Article  CAS  Google Scholar 

  6. Ohkoshi, S-i. et al. Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nature Chem. 2, 539–545 (2010).

    Article  CAS  Google Scholar 

  7. Wang, X., Zhuang, J., Peng, Q. & Li, Y. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    Article  CAS  Google Scholar 

  8. Tian, N., Zhou, Z. Y., Sun, S. G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  9. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  10. Herricks, T., Chen, J. & Xia, Y. Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett. 4, 2367–2371 (2004).

    Article  CAS  Google Scholar 

  11. Xia, Y., Xiong, Y. J., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    CAS  Google Scholar 

  12. Choi, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    Article  CAS  Google Scholar 

  13. Weiner, S. & Addadi, L. Design strategies in mineralized biological materials. J. Mater. Chem. 7, 689–702 (1997).

    Article  CAS  Google Scholar 

  14. Ball, P. Life's lessons in design. Nature 409, 413–416 (2001).

    Article  CAS  Google Scholar 

  15. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

    Google Scholar 

  16. De Yoreo, J. J. & Vekilov, P. G. Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).

    Article  CAS  Google Scholar 

  17. Tamerler, C. & Sarikaya, M. Molecular biomimetics: utilizing nature's molecular ways in practical engineering. Acta Biomater. 3, 289–299 (2007).

    Article  CAS  Google Scholar 

  18. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  19. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001).

    Article  CAS  Google Scholar 

  20. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  21. Pileni, M-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2, 145–150 (2003).

    Article  CAS  Google Scholar 

  22. Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E. & Stone, M. O. Biomimetic synthesis and patterning of silver nanoparticles. Nature Mater. 1, 169–172 (2002).

    Article  CAS  Google Scholar 

  23. Sarikaya, M., Tamerler, C., Jen, A. K. Y., Schulten, K. & Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  24. Uchida, M. et al. Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19, 1025–1042 (2007).

    Article  CAS  Google Scholar 

  25. Whaley, S. R., English, D. S., Hu, E. L., Barbara, P. F. & Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 405, 665–668 (2000).

    Article  CAS  Google Scholar 

  26. Li, Y., Whyburn, G. P. & Huang, Y. Specific peptide regulated synthesis of ultrasmall platinum nanocrystals. J. Am. Chem. Soc. 131, 15998–15999 (2009).

    Article  CAS  Google Scholar 

  27. Gugliotti, L. A., Feldheim, D. L. & Eaton, B. E. RNA-mediated metal–metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304, 850–852 (2004).

    Article  CAS  Google Scholar 

  28. Brown, S., Sarikaya, M. & Johnson, E. A genetic analysis of crystal growth. J. Mol. Biol. 299, 725–735 (2000).

    Article  CAS  Google Scholar 

  29. Li, Y. & Huang, Y. Morphology-controlled synthesis of platinum nanocrystals with specific peptides. Adv. Mater. 22, 1921–1925 (2010).

    Article  CAS  Google Scholar 

  30. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  Google Scholar 

  31. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley, 1994).

    Google Scholar 

  32. Bratlie, K. M., Lee, H., Komvopoulos, K., Yang, P. D. & Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7, 3097–3101 (2007).

    Article  CAS  Google Scholar 

  33. Sun, S. & Murray, C. B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices. J. Appl. Phys. 85, 4325–4330 (1999).

    Article  CAS  Google Scholar 

  34. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 118, 7988–7992 (2006).

    Article  Google Scholar 

  35. Seker, U. O. S. et al. Adsorption behavior of linear and cyclic genetically engineered platinum binding peptides. Langmuir 23, 7895–7900 (2007).

    Article  CAS  Google Scholar 

  36. Wang, Z. L., Petroski, J. M., Green, T. C. & El-Sayed, M. A. Shape transformation and surface melting of cubic and tetrahedral platinum nanocrystals. J. Phys. Chem. B 102, 6145–6151 (1998).

    Article  CAS  Google Scholar 

  37. So, C. R. et al. Molecular recognition and supramolecular self-assembly of a genetically engineered gold binding peptide on Au{111}. ACS Nano 3, 1525–1531 (2009).

    Article  CAS  Google Scholar 

  38. Oren, E. E., Tamerler, C. & Sarikaya, M. Metal recognition of septapeptides via polypod molecular architecture. Nano Lett. 5, 415–419 (2005).

    Article  CAS  Google Scholar 

  39. Heinz, H. et al. Nature of molecular interactions of peptides with gold, palladium, and Pd–Au bimetal surfaces in aqueous solution. J. Am. Chem. Soc. 131, 9704–9714 (2009).

    Article  CAS  Google Scholar 

  40. Karlberg, G. S. Adsorption trends for water, hydroxyl, oxygen, and hydrogen on transition-metal and platinum-skin surfaces. Phys. Rev. B 74, 153414 (2006).

    Article  Google Scholar 

  41. Teng, X. W. & Yang, H. Synthesis of platinum multipods: an induced anisotropic growth. Nano Lett. 5, 885–891 (2005).

    Article  CAS  Google Scholar 

  42. Song, H., Kim, F., Connor, S., Somorjai, G. A. & Yang, P. Pt nanocrystals: shape control and Langmuir–Blodgett monolayer formation. J. Phys. Chem. B 109, 188–193 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

C-Y.C., Y.L., L.R. and Y.H. acknowledge support from the Office of Naval Research (ONR) (award N00014-08-1-0985), the Army Research Office (ARO) (award 54709-MS-PCS and MURI award W911NF-08-1-0364) and from the Sloan Research Fellowship. C-Y.C., Y.L., L.R. and Y.H. also acknowledge the Electron Imaging Center of Nanomachines for TEM support and Y. Tang for LC-MS support. X.Y. and C.B.M. acknowledge the support for metal nanocrystal synthesis from the Department of Energy's Division of Basic Energy Sciences (award DE-SC0002158) and the ARO (MURI award W911NF-08-1-0364).

Author information

Authors and Affiliations

Authors

Contributions

Y.H. and C-Y.C. conceived and designed the experiments. C-Y.C. performed the experiments. C-Y.C. and Y.L. collected and analysed the data. L.R., X.Y. and C.B.M. contributed to preparing starting nanoparticle substrates for peptide selection. C-Y.C., Y.L. and Y.H. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yu Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2259 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, CY., Li, Y., Ruan, L. et al. Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nature Chem 3, 393–399 (2011). https://doi.org/10.1038/nchem.1025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing