Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iridium-catalysed direct C–C coupling of methanol and allenes

Abstract

Methanol is an abundant (35 million metric tons per year), renewable chemical feedstock, yet its use as a one-carbon building block in fine chemical synthesis is highly underdeveloped. Using a homogeneous iridium catalyst developed in our laboratory, methanol engages in a direct C–C coupling with allenes to furnish higher alcohols that incorporate all-carbon quaternary centres, free of stoichiometric by-products. A catalytic mechanism that involves turnover-limiting methanol oxidation, a consequence of the high energetic demand of methanol dehydrogenation, is corroborated through a series of competition kinetics experiments. This process represents the first catalytic C–C coupling of methanol to provide discrete products of hydrohydroxymethylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism for the iridium-catalysed C–C coupling of methanol and the structure of DPPF-I.
Figure 2: Deuterium labelling and competition kinetics experiments.

Similar content being viewed by others

References

  1. Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    CAS  PubMed  Google Scholar 

  2. Sheldon, R. A. The E factor: fifteen years on. Green Chem. 9, 1273–1283 (2007).

    CAS  Google Scholar 

  3. Clark, J. H. Green chemistry for the second generation biorefinery – sustainable chemical manufacturing based on biomass. J. Chem. Tech. Biotech. 82, 603–609 (2007).

    CAS  Google Scholar 

  4. Lange, J.-P. Sustainable chemical manufacturing: a matter of resources, wastes, hazards and costs. ChemSusChem 2, 587–592 (2009).

    CAS  PubMed  Google Scholar 

  5. The Methanol Institute: http://www.methanol.org/pdfFrame.cfm?pdf=WorldMeOHDemandbyDerivative.pdf (accessed 3 February 2011).

  6. Chang, C. D. & Silvestri, A. J. Conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal. 47, 249–259 (1977).

    CAS  Google Scholar 

  7. Stöcker, M. Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor. Mesopor. Mater. 29, 3–48 (1999).

    Google Scholar 

  8. Olah, G. A. & Molnár, A. Hydrocarbon Chemistry 2nd edn, pp. 117–122 (Wiley, 2003).

    Google Scholar 

  9. Haw, J. F., Song, W., Marcus, D. M. & Nicholas, J. B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res. 36, 317–326 (2003).

    CAS  PubMed  Google Scholar 

  10. Bercaw, J. E. et al. Conversion of methanol to 2,2,3-trimethylbutane (triptane) over indium (III) iodide. Inorg. Chem. 46, 11371–11380 (2007).

    CAS  PubMed  Google Scholar 

  11. Ahn, J. H., Temel, B. & Iglesia, E. Selective homologation routes to 2,2,3-trimethylbutane on solid acids. Angew. Chem. Int. Ed. 48, 3814–3816 (2009).

    CAS  Google Scholar 

  12. Kalck, P. & Serp, P. Iridium Complexes in Organic Synthesis (eds Oro, L. A. & Claver, C.) pp 195–209 (Wiley, 2008).

    Google Scholar 

  13. Haynes, A. Acetic acid synthesis by catalytic carbonylation of methanol. Top. Organomet. Chem. 18, 179–205 (2006).

    CAS  Google Scholar 

  14. Jones, J. H. The Cativa process for the manufacture of acetic acid. Platinum Met. Rev. 44, 94–105 (2000).

    CAS  Google Scholar 

  15. Maitlis, P. M., Haynes, A., Sunley, G. J. & Howard, M. J. Methanol carbonylation: thirty years on. J. Chem. Soc., Dalton Trans. 11, 2187–2196 (1996).

    Google Scholar 

  16. Jo, E.-A., Lee, J.-H. & Jun, C.-H. Rhodium(I)-catalyzed one-pot synthesis of dialkyl ketones from methanol and alkenes through directed sp3 C–H bond activation of N-methylamine. Chem. Commun. 44, 5779–5781 (2008).

    Google Scholar 

  17. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry pp 127–144 (Wiley, 2003).

    Google Scholar 

  18. Patman, R. L., Bower, J. F., Kim, I. S. & Krische, M. J. Formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation: vinylation, allylation, and enolate addition. Aldrichim. Acta 41, 95–104 (2008).

    CAS  Google Scholar 

  19. Bower, J. F., Kim, I. S., Patman, R. L. & Krische, M. J. Catalytic carbonyl addition through transfer hydrogenation: a departure from preformed organometallic reagents. Angew. Chem. Int. Ed. 48, 34–46 (2009).

    CAS  Google Scholar 

  20. Han, S. B., Kim, I. S. & Krische, M. J. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chem. Commun. 2009, 7278–7287 (2009).

    Google Scholar 

  21. Shibahara, F., Bower, J. F. & Krische, M. J. Ruthenium-catalyzed C–C bond forming transfer hydrogenation: carbonyl allylation from the alcohol or aldehyde oxidation level employing acyclic 1,3-dienes as surrogates to preformed allyl metal reagents. J. Am. Chem. Soc. 130, 6338–6339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shibahara, F., Bower, J. F. & Krische, M. J. Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C–C bond-forming transfer hydrogenation: synthesis of β,γ-unsaturated ketones. J. Am. Chem. Soc. 130, 14120–14122 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, H. & Krische, M. J. Direct ruthenium-catalyzed C–C coupling of ethanol: diene hydro-hydroxyethylation to form all-carbon quaternary centers. Org. Lett. 12, 2844–2846 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Patman, R. L., Chaulagain, M. R., Williams, V. M. & Krische, M. J. Direct vinylation of alcohols or aldehydes employing alkynes as vinyl donors: a ruthenium catalyzed C–C bond-forming transfer hydrogenation. J. Am. Chem. Soc. 131, 2066–2067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Williams, V. M., Leung, J. C., Patman, R. L. & Krische, M. J. Hydroacylation of 2-butyne from the alcohol or aldehyde oxidation level via ruthenium catalyzed C–C bond forming transfer hydrogenation. Tetrahedron 65, 5024–5029 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zbieg, J. R., McInturff, E. L. & Krische, M. J. Allenamide hydro-hydroxyalkylation: 1,2-amino alcohols via ruthenium-catalyzed carbonyl anti-aminoallylation. Org. Lett. 12, 2514–2516 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bower, J. F., Patman, R. L. & Krische, M. J. Iridium-catalyzed C–C coupling via transfer hydrogenation: carbonyl addition from the alcohol or aldehyde oxidation level employing 1,3-cyclohexadiene. Org. Lett. 10, 1033–1035 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zbieg, J. R., Fukuzumi, T. & Krische, M. J. Iridium catalyzed hydrohydroxyalkylation of butadiene: carbonyl crotylation. Adv. Synth. Catal. 352, 2416–2420 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, I. S., Ngai, M.-Y. & Krische, M. J. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate. J. Am. Chem. Soc. 130, 6340–6341 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, I. S., Ngai, M.-Y. & Krische, M. J. Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: departure from chirally modified allyl metal reagents in carbonyl addition. J. Am. Chem. Soc. 130, 14891–14899 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, I. S., Han, S.-B. & Krische, M. J. anti-Diastereo- and enantioselective carbonyl crotylation from the alcohol or aldehyde oxidation level employing a cyclometallated iridium catalyst: α-methyl allyl acetate as a surrogate to preformed crotylmetal reagents. J. Am. Chem. Soc. 131, 2514–2520 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lu, Y., Kim, I. S., Hassan, A., Del Valle, D. J. & Krische, M. J. 1,n-Glycols as dialdehyde equivalents in iridium-catalyzed enantioselective carbonyl allylation and iterative two-directional assembly of 1,3-polyols. Angew. Chem. Int. Ed. 48, 5018–5021 (2009).

    CAS  Google Scholar 

  33. Zhang, Y. J., Yang, J. H., Kim, S. H. & Krische, M. J. anti-Diastereo- and enantioselective carbonyl (hydroxymethyl) allylation from the alcohol or aldehyde oxidation level: allyl carbonates as allylmetal surrogates. J. Am. Chem. Soc. 132, 4562–4563 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Han, S. B., Kim, I.-S., Han, H. & Krische, M. J. Enantioselective carbonyl reverse prenylation from the alcohol or aldehyde oxidation level employing 1,1-dimethylallene as the prenyl donor. J. Am. Chem. Soc. 131, 6916–6917 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Qian, M., Liauw, M. A. & Emig, G. Formaldehyde synthesis from methanol over silver catalysts. Appl. Catal. A: Gen. 238, 211–222 (2003).

    CAS  Google Scholar 

  36. Lin, W.-H. & Chang, H.-F. A study of ethanol dehydration reaction in a palladium membrane reactor. Catal. Today 97, 181–188 (2004).

    CAS  Google Scholar 

  37. Yamagata, T., Iseki, A. & Tani, K. Preparation, properties and structures of [IrCl(diphosphine)]2 (diphosphine=(R)-BINAP and BPBP). Chem. Lett. 26, 1215–1216 (1997).

    Google Scholar 

  38. Tani, K., Iseki, A. & Yamagata, T. Efficient transfer hydrogenation of alkynes and alkenes with methanol catalysed by hydrido(methoxy)iridium(III) complexes. Chem. Commun. 1821–1822 (1999).

  39. Smejkal, T., Han, H., Breit, B. & Krische, M. J. All-carbon quaternary centers via ruthenium-catalyzed hydroxymethylation of 2-substituted butadienes mediated by formaldehyde: beyond hydroformylation. J. Am. Chem. Soc. 131, 10366–10367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Beaupére, D., Bauer, P., Nadjo, L. & Uzan, R. Transfer hydrogenation between alcohols and α,β-unsaturated ketones with RhH(PPh3)4 as catalyst. Evidence for regiospecificity and an unusual rate-limiting step. J. Organomet. Chem. 238, C12–C14 (1982).

    Google Scholar 

  41. Beaupére, D., Nadjo, L. & Uzan, R. New aspects of the transfer hydrogenation of α,β-unsaturated ketones by alcohols in the presence of hydridotetrakis(triphenylphosphine)rhodium(I) Part II. 1H NMR study and isotope effects. J. Mol. Catal. 20, 185–193 (1983).

    Google Scholar 

  42. Casey, C. P. & Johnson, J. B. Kinetic isotope effect evidence for a concerted hydrogen transfer mechanism in transfer hydrogenations catalyzed by [p-(Me2CH)C6H4Me]Ru(NHCHPhCHPhNSO2C6H4-p-CH3). J. Org. Chem. 68, 1998–2001 (2003).

    CAS  PubMed  Google Scholar 

  43. Johnson, J. B. & Bäckvall, J.-E. Mechanism of ruthenium-catalyzed hydrogen transfer reactions: concerted transfer of OH and CH hydrogens from an alcohol to a (cyclopentadienone)ruthenium complex. J. Org. Chem. 68, 7681–7684 (2003).

    CAS  PubMed  Google Scholar 

  44. Sandoval, C. A., Ohkuma, T., Muniz, K. & Noyori, R. Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine-ruthenium(II) complexes. J. Am. Chem. Soc. 125, 13490–13503 (2003).

    CAS  PubMed  Google Scholar 

  45. Pannetier, N., Sortais, J.-B., Dieng, P. S., Barloy, L. Sirlin, C. & Pfeffer, M. Kinetics and mechanism of ruthenacycle-catalyzed asymmetric transfer hydrogenation. Organometallics 27, 5852–5859 (2008).

    CAS  Google Scholar 

  46. Stoutland, P. O., Bergman, R. G., Nolan, S. P. & Hoff, C. D. The thermodynamic driving force for C–H activation at iridium. Polyhedron 7, 1429–1440 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgement is made to the Robert A. Welch Foundation (F-0038), the Texas Higher Education Coordinating Board (NHARP Award 01849), the University of Texas Center for Green Chemistry and Catalysis and the National Science Foundation (CHE-1021640). The Natural Sciences and Engineering Research Council of Canada and the German Research Foundation are thanked for partial support of J.M. and A.P., respectively.

Author information

Authors and Affiliations

Authors

Contributions

J.M., A.P. and R.A.M. carried out the experiments. M.J.K. directed the study. M.J.K. and J.M. co-wrote the manuscript.

Corresponding author

Correspondence to Michael J. Krische.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4002 kb)

Supplementary information

Crystallographic data for compound DPPF-I (CIF 69 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, J., Preetz, A., Mesch, R. et al. Iridium-catalysed direct C–C coupling of methanol and allenes. Nature Chem 3, 287–290 (2011). https://doi.org/10.1038/nchem.1001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1001

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing