Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles

Abstract

The heterogeneous reactions of O3 with aerosol particles are of central importance to air quality. They are studied extensively, but the molecular mechanisms and kinetics remain unresolved. Based on new experimental data and calculations, we show that long-lived reactive oxygen intermediates (ROIs) are formed. The chemical lifetime of these intermediates exceeds 100 seconds, which is much longer than the surface residence time of molecular O3 (~10−9 s). The ROIs explain and resolve apparent discrepancies between earlier quantum mechanical calculations and kinetic experiments. They play a key role in the chemical transformation and adverse health effects of toxic and allergenic air-particulate matter, such as soot, polycyclic aromatic hydrocarbons and proteins. ROIs may also be involved in the decomposition of O3 on mineral dust and in the formation and growth of secondary organic aerosols. Moreover, ROIs may contribute to the coupling of atmospheric and biospheric multiphase processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the atmospheric and physiological sources, coupling and effects of ROS.
Figure 2: Lennard-Jones potential energy diagram for the adsorption of molecular and dissociated O3.
Figure 3: Experimental and model results for heterogeneous ozonolysis of the PAH BaP on soot aerosol particles.
Figure 4: Energy profile for the reaction of O3 with the PAH BaP on soot.
Figure 5: Uptake coefficients of NO2 by protein particles.
Figure 6: Uptake coefficients of NO2 by O3-pretreated protein particles.

Similar content being viewed by others

References

  1. Venkatachari, P. & Hopke, P. K. Development and evaluation of a particle-bound reactive oxygen species generator. J. Aerosol. Sci. 39, 168–174 (2008).

    Article  CAS  Google Scholar 

  2. Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55, 373–399 (2004).

    Article  CAS  Google Scholar 

  3. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  CAS  Google Scholar 

  4. Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).

    Article  CAS  Google Scholar 

  5. Pöschl, U. Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44, 7520–7540 (2005).

    Article  Google Scholar 

  6. George, I. J. & Abbatt, J. P. D. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chem. 2, 713–722 (2010).

    Article  CAS  Google Scholar 

  7. Finlayson-Pitts, B. J. & Pitts, J. N. Chemistry of the Upper and Lower Atmosphere (Academic Press, 2000).

    Google Scholar 

  8. Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics – From Air Pollution to Climate Change (John Wiley, 1998).

    Book  Google Scholar 

  9. Finlayson-Pitts, B. J. Reactions at surfaces in the atmosphere: integration of experiments and theory as necessary (but not necessarily sufficient) for predicting the physical chemistry of aerosols. Phys. Chem. Chem. Phys. 11, 7760–7779 (2009).

    Article  CAS  Google Scholar 

  10. McCabe, J. & Abbatt, J. P. D. Heterogeneous loss of gas-phase ozone on n-hexane soot surfaces: similar kinetics to loss on other chemically unsaturated solid surfaces. J. Phys. Chem. C 113, 2120–2127 (2009).

    Article  CAS  Google Scholar 

  11. Maranzana, A. et al. Ozone interaction with polycyclic aromatic hydrocarbons and soot in atmospheric processes: theoretical density functional study by molecular and periodic methodologies. J. Phys. Chem. A 109, 10929–10939 (2005).

    Article  CAS  Google Scholar 

  12. Pöschl, U., Letzel, T, Schauer, C. & Niessner, R. Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J. Phys. Chem. A 105, 4029–4041 (2001).

    Article  Google Scholar 

  13. Kolb, C. E. et al. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds. Atmos. Chem. Phys. 10, 10561–10605 (2010).

    Article  CAS  Google Scholar 

  14. Rudich, Y., Donahue, N. M. & Mentel, T. F. Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 58, 321–352 (2007).

    Article  CAS  Google Scholar 

  15. Chu, S. N. et al. Ozone oxidation of surface-adsorbed polycyclic aromatic hydrocarbons: role of PAH–surface interaction. J. Am. Chem. Soc. 132, 15968–15975 (2010).

    Article  CAS  Google Scholar 

  16. Nel, A. Air pollution-related illness: effects of particles. Science 308, 804–806 (2005).

    Article  CAS  Google Scholar 

  17. Pöschl, U. Formation and decomposition of hazardous chemical components contained in atmospheric aerosol particles. J. Aerosol. Med. 15, 203–212 (2002).

    Article  Google Scholar 

  18. Franze, T., Weller, M. G., Niessner, R. & Pöschl, U. Protein nitration by polluted air. Environ. Sci. Technol. 39, 1673–1678 (2005).

    Article  CAS  Google Scholar 

  19. Fröhlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R. & Pöschl U. High diversity of fungi in air particulate matter. Proc. Natl Acad. Sci. USA 106, 12814–12819 (2009).

    Article  Google Scholar 

  20. Yang, H., Zhang, Y. & Pöschl, U. Quantification of nitrotyrosine in nitrated proteins. Anal. Bioanal. Chem. 397, 879–886 (2010).

    Article  CAS  Google Scholar 

  21. Gruijthuijsen, Y. K. et al. Nitration enhances the allergenic potential of proteins. Int. Arch. Allergy Immunol. 141, 265–275 (2006).

    Article  CAS  Google Scholar 

  22. Traidl-Hoffmann, C., Jakob, T. & Behrendt, H. Determinants of allergenicity. J. Allergy Clin. Immunol. 123, 558–566 (2009).

    Article  CAS  Google Scholar 

  23. Ammann, M., Pöschl, U. & Rudich, Y. Effects of reversible adsorption and Langmuir–Hinshelwood surface reactions on gas uptake by atmospheric particles. Phys. Chem. Chem. Phys. 5, 351–356 (2003).

    Article  CAS  Google Scholar 

  24. Shiraiwa, M., Garland, R. M. & Pöschl, U. Kinetic double-layer model of aerosol surface chemistry and gas-particle interactions (K2-SURF): degradation of polycyclic aromatic hydrocarbons exposed to O3, NO2, H2O, OH and NO3 . Atmos. Chem. Phys. 9, 9571–9586 (2009).

    Article  CAS  Google Scholar 

  25. Kwamena, N. O. A. et al. Role of the aerosol substrate in the heterogeneous ozonation reactions of surface-bound PAHs. J. Phys. Chem. A 111, 11050–11058 (2007).

    Article  CAS  Google Scholar 

  26. Lee, G., Lee, B., Kim, J. & Cho, K. Ozone adsorption on graphene: ab initio study and experimental validation. J. Phys. Chem. C 113, 14225–14229 (2009).

    Article  CAS  Google Scholar 

  27. Lennard-Jones, J. E. Processes of adsorption and diffusion on solid surfaces. Trans. Faraday Soc. 28, 333–358 (1932).

    Article  CAS  Google Scholar 

  28. Giordana, A. et al. Soot platelets and PAHs with an odd number of unsaturated carbon atoms and pi electrons: theoretical study of their spin properties and interaction with ozone. J. Phys. Chem. A 112, 973–982 (2008).

    Article  CAS  Google Scholar 

  29. Stephens, S., Rossi, M. J. & Golden D. M. The heterogeneous reaction of ozone on carbonaceous surfaces. Int. J. Chem. Kinet. 18, 1133–1149 (1986).

    Article  CAS  Google Scholar 

  30. Rogaski, C. A., Golden, D. M. & Williams, L. R. Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4 . Geophys. Res. Lett., 24, 381–384 (1997).

    Article  CAS  Google Scholar 

  31. Sorescu, D. C., Jordan, K. D. & Avouris, P. Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. J. Phys. Chem. B 105, 11227–11232 (2001).

    Article  CAS  Google Scholar 

  32. Kutana, A. & Giapis, K. P. First-principles study of chemisorption of oxygen and aziridine on graphitic nanostructures. J. Phys. Chem. C 113, 14721–14726 (2009).

    Article  CAS  Google Scholar 

  33. Paulot, F. et al. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325, 730–733 (2009).

    Article  CAS  Google Scholar 

  34. Ammann, M. Using 13N as tracer in heterogeneous atmospheric chemistry experiments. Radiochim. Acta 89, 831–838 (2001).

    CAS  Google Scholar 

  35. Truong, H., Lomnicki, S. & Dellinger, B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter. Environ. Sci. Technol., 44, 1933–1939 (2010).

    Article  CAS  Google Scholar 

  36. Harrison, M. A. J. et al. Nitrated phenols in the atmosphere: a review. Atmos. Environ., 39, 231–248 (2005).

    Article  CAS  Google Scholar 

  37. Zhang, Y., Yang, H. & Pöschl, U. Analysis of nitrated proteins and tryptic peptides by HPLC-chip-MS/MS: site-specific quantification, nitration degree, and reactivity of tyrosine residues. Anal. Bioanal. Chem. 399, 459–477 (2011).

    Article  CAS  Google Scholar 

  38. Walcher, W. et al. Liquid- and gas-phase nitration of bovine serum albumin studied by LC-MS and LC-MS/MS using monolithic columns. J. Proteome Res. 2, 534–542 (2003).

    Article  CAS  Google Scholar 

  39. Baker, J., Aschmann, S. M., Arey, J. & Atkinson, R. Reactions of stabilized Criegee intermediates from the gas-phase reactions of O3 with selected alkenes. Int. J. Chem. Kinet. 34, 73–85 (2001).

    Article  Google Scholar 

  40. Dubowski, Y. et al. Interaction of gas-phase ozone at 296 K with unsaturated self-assembled monolayers: a new look at an old system. J. Phys. Chem. A 108, 10473–10485 (2004).

    Article  CAS  Google Scholar 

  41. Li, W., Gibbs, G. V. & Oyama, S. T. Mechanism of ozone decomposition on a manganese oxide catalyst. I. In situ Raman spectroscopy and ab initio molecular orbital calculations. J. Am. Chem. Soc. 120, 9041–9046 (1998).

    Article  CAS  Google Scholar 

  42. Sullivan, R. C., Thornberry, T. & Abbatt, J. P. D. Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles. Atmos. Chem. Phys. 4, 1301–1310 (2004).

    Article  CAS  Google Scholar 

  43. Hanisch, F. & Crowley, J. N. Ozone decomposition on Saharan dust: an experimental investigation. Atmos. Chem. Phys. 3, 119–130 (2003).

    Article  CAS  Google Scholar 

  44. Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys. 9, 5155–5235 (2009).

    Article  CAS  Google Scholar 

  45. Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  CAS  Google Scholar 

  46. Virtanen, A. et al. An amorphous solid state of biogenic secondary organic aerosol particles. Nature 467, 824–827 (2010).

    Article  CAS  Google Scholar 

  47. Pöschl, U. et al. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 329, 1513–1516 (2010).

    Article  Google Scholar 

  48. Kalberer, M. et al. Identification of polymers as major components of atmospheric organic aerosols. Science 303, 1659–1662 (2004).

    Article  CAS  Google Scholar 

  49. Pöschl, U., Rudich, Y. & Ammann, M. Kinetic model framework for aerosol and cloud surface chemistry and gas–particle interactions. Part 1: General equations, parameters, and terminology. Atmos. Chem. Phys. 7, 5989–6023 (2007).

    Article  Google Scholar 

  50. Ammann, M. & Pöschl, U. Kinetic model framework for aerosol and cloud surface chemistry and gas–particle interactions. Part 2: Exemplary practical applications and numerical simulations. Atmos. Chem. Phys. 7, 6025–6045 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Max Planck Society, the Swiss National Science Foundation (Grant 130175) and the European Integrated Project on Aerosol, Cloud, Climate and Air Quality Interactions (036833-2 EUCAARI). We thank M. Birrer, T. Bartels-Rausch and M. Kerbrat for support, and the staff of the Paul Scherrer Institute accelerator facilities for providing the stable proton beams used to produce 13N with the PROTRAC facility. M.S. is supported by the Max Planck Graduate Center, Johannes Gutenberg University Mainz, the University of Tokyo, and the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Contributions

U.P., M.A. and M.S. designed the research. M.S., Y.S., A.R. and M.A. performed tracer experiments and M.S. analysed the data. H.Y. and Y.Z. contributed to the protein studies. M.S. and U.P. conducted the kinetic modelling. M.S., U.P., M.A. and J.A. discussed the results. M.S., U.P. and M.A. co-wrote the paper.

Corresponding author

Correspondence to Ulrich Pöschl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiraiwa, M., Sosedova, Y., Rouvière, A. et al. The role of long-lived reactive oxygen intermediates in the reaction of ozone with aerosol particles. Nature Chem 3, 291–295 (2011). https://doi.org/10.1038/nchem.988

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.988

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing