Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework

Abstract

Formed by linking metals or metal clusters through organic linkers, metal–organic frameworks are a class of solids with structural and chemical properties that mark them out as candidates for many emerging gas storage, separation, catalysis and biomedical applications. Important features of these materials include their high porosity and their flexibility in response to chemical or physical stimuli. Here, a copper-based metal–organic framework has been prepared in which the starting linker (benzene-1,3,5-tricarboxylic acid) undergoes selective monoesterification during synthesis to produce a solid with two different channel systems, lined by hydrophilic and hydrophobic surfaces, respectively. The material reacts differently to gases or vapours of dissimilar chemistry, some stimulating subtle framework flexibility or showing kinetic adsorption effects. Adsorption can be switched between the two channels by judicious choice of the conditions. The monoesterified linker is recoverable in quantitative yield, demonstrating possible uses of metal–organic frameworks in molecular synthetic chemistry as ‘protecting groups’ to accomplish selective transformations that are difficult using standard chemistry techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STAM-1 as a protecting group for the monomethyl esterification of benzene-1,3,5-tricarboxylic acid (BTC).
Figure 2: Structure of STAM-1.
Figure 3: Characterization of STAM-1.
Figure 4: Gas adsorption measurements on STAM-1.

Similar content being viewed by others

References

  1. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  2. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  3. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  4. McKinlay, A. C. et al. BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 6260–6266 (2010).

    Article  CAS  Google Scholar 

  5. Tranchemontagne, D. J., Mendoza-Cortés, J. L., O'Keeffe, M. & Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal–organic frameworks. Chem. Soc. Rev. 38, 1257–1283 (2009).

    Article  CAS  Google Scholar 

  6. Wang, Z. & Cohen, S. M. Post synthetic modification of metal–organic frameworks, Chem. Soc. Rev. 38, 1315–1329 (2009).

    Article  CAS  Google Scholar 

  7. Kaye, S. S. & Long, J. R. Matrix isolation chemistry in a porous metal–organic framework: photochemical substitutions of N2 and H2 in Zn4O[(η6-1,4-benzenedicarboxylate)Cr(CO)3]3 . J. Am. Chem. Soc. 130, 806–807 (2008).

    Article  CAS  Google Scholar 

  8. Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008).

    Article  CAS  Google Scholar 

  9. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  10. Férey, G. et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed. 43, 6296–6301 (2004).

    Article  Google Scholar 

  11. Seo, Y. K., Hundal, G., Jang, I. T., Hwang, Y. K., Jun, C. H. & Chang, J. S. Microwave synthesis of hybrid inorganic–organic materials including porous Cu3(BTC)2 from Cu(II)–trimesate mixture. Micro. Mesopor. Mater. 119, 331–337 (2009).

    Article  CAS  Google Scholar 

  12. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastre, J. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    Article  CAS  Google Scholar 

  13. Jiang, Y. et al. Adsorption–desorption induced structural changes of Cu–MOF evidenced by solid state NMR and EPR spectroscopy. J. Am. Chem. Soc. 131, 2058–2059 (2009).

    Article  CAS  Google Scholar 

  14. Roosma, J., Mes, T., Leclere, P. Palmans, A. R. A. & Meier, E. W. Supramolecular materials from benzene-1,3,5-tricarboxamide based nanorods. J. Am. Chem. Soc. 130, 1120–1121 (2008).

    Article  CAS  Google Scholar 

  15. Wallace, J. U. & Chen, S. H. Simplified scheme for deterministic synthesis of chiral-nematic glassy liquid crystals. Ind. Eng. Chem. Res. 45, 4494–4499 (2006).

    Article  CAS  Google Scholar 

  16. Grayson, S. M. & Frechet, J. M. J. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101, 3819–3867 (2001).

    Article  CAS  Google Scholar 

  17. Greig, L. M. & Philp, D. Applying biological principles to the assembly and selection of synthetic superstructures. Chem. Soc. Rev. 30, 287–302 (2001).

    Article  CAS  Google Scholar 

  18. Wang, L. Y., Vysotsky, M. O., Bogdan, A., Bolte, M. & Bohmer, V. Multiple catenanes derived from calix[4] arenes. Science 304, 1312–1314 (2004).

    Article  CAS  Google Scholar 

  19. Da Silva, N. et al. A bioinspired approach for controlling accessibility in calix[4] arene-bound metal cluster catalysts. Nature Chem. 2, 1062–1068 (2010).

    Article  Google Scholar 

  20. Kawano, M., Kawamichi, T., Haneda, T., Kojima, T. & Fujita, M. The modular synthesis of functional porous coordination networks. J. Am. Chem. Soc. 129, 15418–15419 (2007).

    Article  CAS  Google Scholar 

  21. Llabrés i Xamena, F., Abad, A., Corma, A. & Garcia, H. MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J. Catal. 250, 294–298 (2007).

    Article  Google Scholar 

  22. Reid, C. R., O'Koye, I. P. & Thomas, K. M. Adsorption of gases on carbon molecular sieves used for air separation. Spherical adsorptives as probes for kinetic selectivity. Langmuir 14, 2415–2425 (1998).

    Article  CAS  Google Scholar 

  23. Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).

    Article  CAS  Google Scholar 

  24. Fletcher, A. J. et al. Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni2(4,4′-bipyridine)3(NO3)4: guest modification of host sorption behavior. J. Am. Chem. Soc. 123, 10001–10011 (2001).

    Article  CAS  Google Scholar 

  25. Fletcher, A. J., Cussen, E. J., Bradshaw, D., Rosseinsky, M. J. & Thomas, K. M. Adsorption of gases and vapors on nanoporous Ni2(4,4′-bipyridine)3(NO3)4 metal–organic framework materials templated with methanol and ethanol: structural effects in adsorption kinetics. J. Am. Chem. Soc. 126, 9750–9759 (2004).

    Article  CAS  Google Scholar 

  26. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew Chem. Int. Ed. 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  27. Klafter, J. & Shlesinger, M. F. On the relationship among 3 theories of relaxation in disordered-systems. Proc. Natl Acad. Sci. USA 83, 848–851 (1986).

    Article  CAS  Google Scholar 

  28. Xiao, B. et al. Chemically blockable transformation and ultraselective low pressure gas adsorption in a non-porous metal organic framework. Nature Chem. 1, 289–294 (2009).

    Article  CAS  Google Scholar 

  29. Mowbray, M., Tan, X. J., Wheatley, P. S., Morris, R. E. & Weller, R. B. Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation. J. Invest. Dermat. 128, 352–360 (2008).

    Article  CAS  Google Scholar 

  30. McKinlay, A. C. et al. Exceptional behavior over the whole adsorption–storage–delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008).

    Article  CAS  Google Scholar 

  31. Xiao, B. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal–organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007).

    Article  CAS  Google Scholar 

  32. Bordiga, S. et al. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR. PCCP 9, 2676–2685 (2007).

    Article  CAS  Google Scholar 

  33. Okoye, I. P., Benham, M. & Thomas, K. M. Adsorption of gases and vapors on carbon molecular sieves. Langmuir 13, 4054–4059 (1997).

    Article  CAS  Google Scholar 

  34. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  35. Zamora, B., Autie, M., Contreras, J. L., Centeno, M. & Reguera, E. Separation of oxygen and nitrogen by porous cyanometallates. Sep. Sci. Technol. 45, 692–699 (2010).

    Article  CAS  Google Scholar 

  36. Morris, R. E. & Wheatley, P. S. Gas storage in nanoporous materials Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    Article  CAS  Google Scholar 

  37. Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nature Chem. 2, 633–637 (2010).

    Article  CAS  Google Scholar 

  38. Ho, T. L. Copper ion-promoted esterifications. Synth. Comm. 19, 2897–2898 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Engineering and Physical Sciences Research Council and the Gas Enabled Medical Innovation (GEMI) fund. R.E.M. is a Royal Society Wolfson Merit Award holder. The authors also thank G. Maurin for calculating the framework charges for the molecular modelling studies.

Author information

Authors and Affiliations

Authors

Contributions

M.I.H.M. and R.E.M. conceived and designed the experiments, and M.I.H.M. synthesized the materials. B.X., P.S.W., X.Z., R.G. and K.M.T. completed the adsorption experiments. M.I.H.M., Y.L., A.M.Z.S, D.W.A. and P.S.W. analysed the diffraction experiments. N.F.C. and T.D. completed the molecular modelling, and J.M.G. and S.E.A. the solid-state NMR.

Corresponding author

Correspondence to Russell E. Morris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1780 kb)

Supplementary information

Crystallographic data for STAM-1 (CIF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohideen, M., Xiao, B., Wheatley, P. et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nature Chem 3, 304–310 (2011). https://doi.org/10.1038/nchem.1003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing