Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis

Abstract

Emiliania huxleyi, an environmentally important marine microalga, has a bloom-and-bust lifestyle in which massive algal blooms appear and fade. Phaeobacter gallaeciensis belongs to the roseobacter clade of α-Proteobacteria, the populations of which wax and wane with that of E. huxleyi. Roseobacter are thought to promote algal growth by biosynthesizing and secreting antibiotics and growth stimulants (auxins). Here we show that P. gallaeciensis switches its secreted small molecule metabolism to the production of potent and selective algaecides, the roseobacticides, in response to p-coumaric acid, an algal lignin breakdown product that is symptomatic of aging algae. This switch converts P. gallaeciensis into an opportunistic pathogen of its algal host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of pCA on secondary metabolites produced by P. gallaeciensis.
Figure 2: Proposed biosynthesis for roseobacticides.
Figure 3: Activity of 6 against E. huxleyi and C. muelleri.
Figure 4: Proposed working model for the interaction between E. huxleyi and P. gallaeciensis.

Similar content being viewed by others

References

  1. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  CAS  Google Scholar 

  2. Schmidt, E. W. Trading molecules and tracking targets in symbiotic interactions. Nature Chem. Biol. 4, 466–473 (2008).

    Article  CAS  Google Scholar 

  3. Clardy, J. Using genomics to deliver natural products from symbiotic bacteria. Genome Biol. 6, 232–235 (2005).

    Article  Google Scholar 

  4. Shank, E. A. & Kolter, R. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12, 205–214 (2009).

    Article  CAS  Google Scholar 

  5. Scott, J. J. et al. Bacterial protection of beetle-fungus mutualism. Science 322, 63 (2008).

    Article  CAS  Google Scholar 

  6. Oh, D. C., Poulsen, M., Currie, C. R. & Clardy, J. Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nature Chem. Biol. 5, 391–393 (2009).

    Article  CAS  Google Scholar 

  7. Oh, D. C., Scott, J. J., Currie, C. R. & Clardy, J. Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org. Lett. 11, 633–636 (2009).

    Article  CAS  Google Scholar 

  8. Currie, C. R. et al. Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science 299, 386–388 (2003).

    Article  CAS  Google Scholar 

  9. Gonzalez, J. M. et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl. Environ. Microbiol. 66, 4237–4246 (2000).

    Article  CAS  Google Scholar 

  10. Siegel, D. A. & Franz, B. A. Oceanography: century of phytoplankton change. Nature 466, 569–571 (2010).

    Article  CAS  Google Scholar 

  11. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004).

    Article  CAS  Google Scholar 

  12. Marsh, M. E. Regulation of CaCO(3) formation in coccolithophores. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 136, 743–754 (2003).

    Article  CAS  Google Scholar 

  13. Holligan, P. M., Viollier, M., Harbour, D. S., Camus, P. & Champagne-Phillippe, M. Satellite and ship studies of coccolithophore production along a continental shelf edge. Nature 304, 339–342 (1983).

    Article  CAS  Google Scholar 

  14. Balch, W. M., Holligan, P. M., Ackleson, S. G. & Voss, K. J. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol. Oceanogr. 36, 629–643 (1991).

    Article  CAS  Google Scholar 

  15. Holligan, P. M. et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles 7, 879–900 (1993).

    Article  CAS  Google Scholar 

  16. Everitt, D. A., Wright, S. W., Volkman, J. K., Thomas, D. P. & Lindstrom, E. J. Phytophlankton community compositions in the western equatorial Pacific determined from chlorophyll and carotenoid pigment distributions. Deep Sea Res. A 37, 975–997 (1990).

    Article  CAS  Google Scholar 

  17. Miller, T. R. & Belas, R. Motility is involved in Silicibacter sp. TM1040 interaction with dinoflagellates. Environ. Microbiol. 8, 1648–1659 (2006).

    Article  CAS  Google Scholar 

  18. Kjelleberg, S. et al. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Mirob. Ecol. 13, 85–93 (1997).

    Article  Google Scholar 

  19. Joint, I. et al. Cell-to-cell communication across the prokaryote–eukaryote boundary. Science 298, 1207 (2002).

    Article  Google Scholar 

  20. Rao, D. et al. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms. Appl. Environ. Microbiol. 73, 7844–7852 (2007).

    Article  CAS  Google Scholar 

  21. Seymour, J. R., Simo, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).

    Article  CAS  Google Scholar 

  22. Matsuo, Y., Imagawa, H., Nishizawa, M. & Shizuri, Y. Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307, 1598 (2005).

    Article  CAS  Google Scholar 

  23. Keshtacher-Liebso, E., Hadar, Y. & Chen, Y. Oligotrophic bacteria enhance algal growth under iron-deficient conditions. Appl. Environ. Microbiol. 61, 2439–2441 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Geng, H., Bruhn, J. B., Nielsen, K. F., Gram, L. & Belas, R. Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Appl. Environ. Microbiol. 74, 1535–1545 (2008).

    Article  CAS  Google Scholar 

  25. Thiel, V. et al. Identification and biosynthesis of tropone derivatives and sulfur volatiles produced by bacteria of the marine Roseobacter clade. Org. Biomol. Chem. 8, 234–246 (2010).

    Article  CAS  Google Scholar 

  26. Ashen, J. B., Cohen, J. D. & Goff, L. J. GC-SIM-MS detection and quantification of free indole-3-acetic acid bacterial galls on the marine alga Prionitis lanceolata (Rhodophyta). J. Phycol. 35, 493–500 (1999).

    Article  CAS  Google Scholar 

  27. Hold, G. L., Smith, E. A., Birbeck, T. H. & Gallacher, S. Comparison of paralytic shellfish toxin (PST) production by the dinoflagellates Alexandrium lusitanicum NEPCC253 and Alexandrium tamarense NEPCC407 in the presence and absence of bacteria. FEMS Microbiol. Ecol. 36, 223–234 (2001).

    Article  CAS  Google Scholar 

  28. Buchan, A., Gonzalez, J. M. & Moran, M. A. Overview of the marine roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).

    Article  CAS  Google Scholar 

  29. Rao, D., Webb, J. S. & Kjelleberg, S. Competitive interactions in mixed-species biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl. Environ. Microbiol. 71, 1729–1736 (2005).

    Article  CAS  Google Scholar 

  30. Greer, E. M., Aebisher, D., Greer, A. & Bentley, R. Computational studies of the tropone natural products, thiotropocin, tropodithietic acid, and troposulfenin. Significance of thiocarbonyl-enol tautomerism. J. Org. Chem. 73, 280–283 (2008).

    Article  CAS  Google Scholar 

  31. Rosenberg, E., Koren, O., Reshef, L., Efrony, R. & Zilber-Rosenberg, I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).

    Article  CAS  Google Scholar 

  32. Lutgendorff, F., Akkermans, L. M. & Soderholm, J. D. The role of microbiota and probiotics in stress-induced gastro-intestinal damage. Curr. Mol. Med. 8, 282–298 (2008).

    Article  CAS  Google Scholar 

  33. Delwiche, C. F., Graham, L. E. & Thomson, N. Lignin-like compounds and sporopollenin coleochaete, an algal model for land and plant ancestry. Science 245, 399–401 (1989).

    Article  CAS  Google Scholar 

  34. Martone, P. T. et al. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 19, 169–175 (2009).

    Article  CAS  Google Scholar 

  35. Espineira, J. M. et al. Distribution of lignin monomers and the evolution of lignification among lower plants. Plant Biol. 13, 59–68 (2011).

    Article  CAS  Google Scholar 

  36. Schaefer, A. L. et al. A new class of homoserine lactone quorum-sensing signals. Nature 454, 595–599 (2008).

    Article  CAS  Google Scholar 

  37. Raes, J., Rohde, A., Christensen, J. H., Van de Peer, Y. & Boerjan, W. Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol. 133, 1051–1071 (2003).

    Article  CAS  Google Scholar 

  38. Boerjan, W., Ralph, J. & Baucher, M. Lignin biosynthesis. Annu. Rev. Plant Biol. 54, 519–546 (2003).

    Article  CAS  Google Scholar 

  39. Rigby, J. H. & Zbur Wilson, J. Total synthesis of guaianolides: (+/–)-dehydrocostus lactone and (+/–)-estafiatin. J. Am. Chem. Soc. 106, 8217–8224 (1984).

    Article  CAS  Google Scholar 

  40. Nair, V., Poonoth, M., Vellalath, S., Suresh, E. & Thirumalai, R. An N-heterocyclic carbene-catalyzed [8+3] annulation of tropone and enals via homoenolate. J. Org. Chem. 71, 8964–8965 (2006).

    Article  CAS  Google Scholar 

  41. Ismail, W. et al. Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur. J. Biochem. 270, 3047–3054 (2003).

    Article  CAS  Google Scholar 

  42. MacDonald, M. J. & D'Cunha, G. B. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 85, 273–282 (2007).

    Article  CAS  Google Scholar 

  43. Czichi, U. & Kindl, H. Formation of p-coumaric acid and o-coumaric acid from L-phenylalanine by microsomal membrane fractions from potato: evidence of membrane-bound enzyme complexes. Planta 125, 115–125 (1975).

    CAS  PubMed  Google Scholar 

  44. Lee, Y. W., Jin, S., Sim, W. S. & Nester, E. W. The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 179, 83–88 (1996).

    Article  CAS  Google Scholar 

  45. Gonzalez, J. M., Kiene, R. P. & Moran, M. A. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65, 3810–3819 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buchan, A., Neidle, E. L. & Moran, M. A. Diversity of the ring-cleaving dioxygenase gene pcaH in a salt marsh bacterial community. Appl. Environ. Microbiol. 67, 5801–5809 (2001).

    Article  CAS  Google Scholar 

  47. https://ccmp.bigelow.org/themes/ccmp/controls/search-map.php?genus=Emiliania&species=huxleyi&commonName=CommonNames&authenticStrain=NA&.

  48. Brinkhoff, T. et al. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl. Environ. Microbiol. 70, 2560–2565 (2004).

    Article  CAS  Google Scholar 

  49. Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).

    Article  CAS  Google Scholar 

  50. Wolfe, G. V. & Steinke, M. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).

    Article  CAS  Google Scholar 

  51. Newton, R. J. et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 4, 784–798 (2010).

    Article  CAS  Google Scholar 

  52. Ashen, J. B. & Goff, L. J. Molecular identification of a bacterium associated with gall formation in the marine red alga Prionitis lanceolata. J. Phycol. 32, 286–297 (1996).

    Article  CAS  Google Scholar 

  53. Lamy, D. et al. Temporal changes of major bacterial groups and bacterial heterotrophic activity during a Phaeocystis globosa bloom in the eastern English Channel. Aquat. Mirob. Ecol. 58, 95–107 (2010).

    Article  Google Scholar 

  54. Cavender-Bares, K. K., Frankel, S. L. & Chisholm, S. W. A dual sheath flow cytometer for shipboard analyses of phytoplankton communities from the oligotrophic oceans. Limnol. Oceanogr. 43, 1383–1388 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Shao-Liang Zheng at the Center for Crystallographic Studies, Harvard University, for solving the crystal structure of roseobacticide A, and Yoko Saikawa and Brenda N. Goguen for helpful discussions. The authors also thank the Chisholm laboratory for use of and help with their flow cytometer, and J.B. Dacks for assistance with bioinformatic analyses. M.R.S. is a Novartis Fellow of the Life Sciences Research Foundation. R.J.C. is a Harvard Ziff Environmental Fellow. This work was supported by the Office of Naval Research (grant N000141010447) and the National Institutes of Health (grants GM58213 and GM82137, R.K.; grants CA24487 and GM086258, J.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.R.S., R.J.C, R.K. and J.C. designed the experiments and wrote the manuscript. M.R.S. performed roseobacticide isolation, structure elucidation and antibacterial assays. R.J.C. performed microscopy and flow cytometry for anti-algal activity assays.

Corresponding authors

Correspondence to Roberto Kolter or Jon Clardy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1290 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seyedsayamdost, M., Case, R., Kolter, R. et al. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nature Chem 3, 331–335 (2011). https://doi.org/10.1038/nchem.1002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing