Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction

Abstract

The click reaction paradigm is focused on the development and implementation of reactions that are simple to perform while being robust and providing exquisite control of the reaction and its products. Arguably the most prolific and powerful of these reactions, the copper-catalysed alkyne–azide reaction (CuAAC) is highly efficient and ubiquitous in an ever increasing number of synthetic methodologies and applications, including bioconjugation, labelling, surface functionalization, dendrimer synthesis, polymer synthesis and polymer modification. Unfortunately, as the Cu(I) catalyst is typically generated by the chemical reduction of Cu(II) to Cu(I), or added as a Cu(I) salt, temporal and spatial control of the CuAAC reaction is not readily achieved. Here, we demonstrate catalysis of the CuAAC reaction via the photochemical reduction of Cu(II) to Cu(I), affording comprehensive spatial and temporal control of the CuAAC reaction using standard photolithographic techniques. Results reveal the diverse capability of this technique in small molecule synthesis, patterned material fabrication and patterned chemical modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General scheme for a photocatalysed CuAAC reaction.
Figure 2: Photo-CuAAC reaction kinetics.
Figure 3: Hydrogel formation patterned by photo-CuAAC reaction.
Figure 4: Fluorescent patterning of a hydrogel by the photo-CuAAC reaction.

Similar content being viewed by others

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  2. Spruell, J. M. et al. Heterogeneous catalysis through microcontact printing. Angew. Chem. Int. Ed. 47, 9927–9932 (2008).

    Article  CAS  Google Scholar 

  3. Peng, W. et al. Efficiency and fidelity in a Click—chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed. 43, 3928–3932 (2004).

    Article  Google Scholar 

  4. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential Click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nature Mater. 8, 659–664 (2009).

    Article  CAS  Google Scholar 

  5. Matyjaszewski, K. & Tsarevsky, N. V. Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chem. 1, 276–288 (2009).

    Article  CAS  Google Scholar 

  6. Iha, R. K. et al. Applications of orthogonal ‘Click’ chemistries in the synthesis of functional soft materials. Chem. Rev. 109, 5620–5686 (2009).

    Article  CAS  Google Scholar 

  7. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  Google Scholar 

  8. El-Sagheer, A. H. & Brown, T. Click chemistry with DNA. Chem. Soc. Rev. 39, 1388–1405 (2010).

    Article  CAS  Google Scholar 

  9. Macpherson, L. J. et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445, 541–545 (2007).

    Article  CAS  Google Scholar 

  10. Cohen, M. S., Hadjivassiliou, H. & Taunton, J. A clickable inhibitor reveals context-dependent autoactivation of p90 RSK. Nature Chem. Biol. 3, 156–160 (2007).

    Article  CAS  Google Scholar 

  11. Bowman, C. N. & Kloxin, C. J. Toward an enhanced understanding and implementation of photopolymerization reactions. AICHE J. 54, 2775–2795 (2008).

    Article  CAS  Google Scholar 

  12. Hoyle, C. E. & Bowman, C. N. Thiol-ene Click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  13. Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    Article  CAS  Google Scholar 

  14. Koh, W.-G., Revzin, A. & Pishko, M. V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002).

    Article  CAS  Google Scholar 

  15. Martens, P. J., Bryant, S. J. & Anseth, K. S. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules 4, 283–292 (2003).

    Article  CAS  Google Scholar 

  16. Neckers, D. C. Architecture with photopolymerization. Polym. Eng. Sci. 32, 1481–1489 (1992).

    Article  CAS  Google Scholar 

  17. Young, J. S., Fox, S. R. & Anseth, K. S. A novel device for producing three-dimensional objects. J. Manuf. Sci. Eng. 121, 474–477 (1999).

    Article  Google Scholar 

  18. Long, D. A. et al. Localized ‘Click’ chemistry through dip-pen nanolithography. Adv. Mater. 19, 4471–4473 (2007).

    Article  CAS  Google Scholar 

  19. Paxton, W. F., Spruell, J. M., and Stoddart, J. F. Heterogeneous catalysis of a copper-coated atomic force microscopy tip for direct-write Click chemistry. J. Am. Chem. Soc. 131, 6692–6694 (2009).

    Article  CAS  Google Scholar 

  20. Rozkiewicz, D. I. et al. ‘Click’ chemistry by microcontact printing. Angew. Chem. Int. Ed. 45, 5292–5296 (2006).

    Article  CAS  Google Scholar 

  21. Devaraj, N. K., Dinolfo, P. H., Chidsey, C. E. D. & Collman, J. P. Selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. J. Am. Chem. Soc. 128, 1794–1795 (2006).

    Article  CAS  Google Scholar 

  22. Hansen, T. S., Daugaard, A. E., Hvilsted, S. & Larsen, N. B. Spatially selective functionalization of conducting polymers by ‘electroclick’ chemistry. Adv. Mater. 21, 4483–4486 (2009).

    Article  CAS  Google Scholar 

  23. Qin, D., Xia, Y. N. & Whitesides, G. M. Rapid prototyping of complex structures with feature sizes larger than 20 µm. Adv. Mater. 8, 917–919 (1996).

    Article  CAS  Google Scholar 

  24. Padwa, A. Intramolecular 1,3-dipolar cycloaddition reactions. Angew. Chem. Int. Ed. Engl. 15, 123–136 (1976).

    Article  Google Scholar 

  25. Poloukhtine, A. A. et al. Selective labeling of living cells by a photo-triggered Click reaction. J. Am. Chem. Soc. 131, 15769–15776 (2009).

    Article  CAS  Google Scholar 

  26. Orski, S. V. et al. High density orthogonal surface immobilization via photoactivated copper-free Click chemistry. J. Am. Chem. Soc. 132, 11024–11026 (2010).

    Article  CAS  Google Scholar 

  27. Meldal, M. Polymer ‘clicking’ by CuAAC reactions. Macromol. Rapid Commun. 29, 1016–1051 (2008).

    Article  CAS  Google Scholar 

  28. Sakamoto, M., Tachikawa, T., Fujitsuka, M. & Majima, T. Three-dimensional writing of copper nanoparticles in a polymer matrix with two-color laser beams. Chem. Mater. 20, 2060–2062 (2008).

    Article  CAS  Google Scholar 

  29. Kasuga, Y. et al. Kinetic study on Huisgen reaction catalyzed by copper (I): triazol formation from water-soluable alkyne and alkyl azide. Heterocycles 78, 983–997 (2009).

    Article  CAS  Google Scholar 

  30. Johnson, J. A., Finn, M. G., Koberstein, J. T. & Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide–alkyne cycloaddition ‘Click’ chemistry. Macromol. Rapid Commun. 29, 1052–1072 (2008).

    Article  CAS  Google Scholar 

  31. Fairbanks, B. D. et al. Thiol-yne photopolymerizations: novel mechanism, kinetics, and step-growth formation of highly cross-linked networks. Macromolecules 42, 211–217 (2009).

    Article  CAS  Google Scholar 

  32. Malkoch, M. et al. Synthesis of well-defined hydrogel networks using Click chemistry. Chem. Commun. 2774–2776 (2006).

  33. Ribeiro, A. C. F. et al. Diffusion coefficients of copper chloride in aqueous solutions at 298.15 K and 310.15 K. J. Chem. Eng. Data 50, 1986–1990 (2005).

    Article  CAS  Google Scholar 

  34. Litter, M. I. Heterogeneous photocatalysis—transition metal ions in photocatalytic systems. Appl. Catal. B 23, 89–114 (1999).

    Article  CAS  Google Scholar 

  35. Zhan, W., Seong, G. H. & Crooks, R. M. Hydrogel-based microreactors as a functional component of microfluidic systems. Anal. Chem. 74, 4647–4652 (2002).

    Article  CAS  Google Scholar 

  36. Ofir, Y. et al. Nanoimprint lithography for functional three-dimensional patterns. Adv. Mater. 22, 3608–3614 (2010).

    Article  CAS  Google Scholar 

  37. Wang, J.-S. & Matyjaszewski, K. ‘Living’/controlled radical polymerization. Transition-metal-catalyzed atom transfer radical polymerization in the presence of a conventional radical initiator. Macromolecules 28, 7572–7573 (1995).

    Article  CAS  Google Scholar 

  38. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the US Department of Education's Graduate Assistantship in Areas of National Need (B.J.A., C.A.D.), Sandia National Labs (B.J.A.) and the National Science Foundation (grant CBET 0933828, C.J.K.).

Author information

Authors and Affiliations

Authors

Contributions

C.N.B., C.J.K. and B.J.A. developed the concept. B.J.A., Y.T., C.J.K., C.A.D., K.S.A. and C.N.B. designed the experiments. C.A.D. synthesized the materials used. B.J.A., Y.T. and C.A.D. performed the experiments. B.J.A., C.J.K., K.S.A. and C.N.B. composed the manuscript.

Corresponding author

Correspondence to Christopher N. Bowman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adzima, B., Tao, Y., Kloxin, C. et al. Spatial and temporal control of the alkyne–azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chem 3, 256–259 (2011). https://doi.org/10.1038/nchem.980

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.980

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing