Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining

Abstract

Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the research approach.
Figure 2: Confocal fluorescence microscopy methodology for the FCC 1 catalyst batch.
Figure 3: Statistical analysis of the fluorescence microscopy data.
Figure 4: Validation of the confocal fluorescence methodology.
Figure 5: Interparticle Brønsted acidity mapping.

Similar content being viewed by others

References

  1. Brouwer, L. E. L. The Petroleum Handbook (Balding & Mansell Limited, 1966).

    Google Scholar 

  2. Cheng, W-C. et al. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J.) 2741–2778 (Wiley-VCH, 2008).

    Google Scholar 

  3. von Balmoos, R., Harris, D. H. & Magee, J. S. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H. & Weitkamp, J.) 1955–1983 (Wiley-VCH, 1997).

    Google Scholar 

  4. Vermeiren, W. & Gilson, J-P. Impact of zeolites on the petroleum and petrochemical industry. Top. Catal. 52, 1131–1161 (2009).

    Article  CAS  Google Scholar 

  5. Newsam, J. M. The zeolite cage structure. Science 231, 1093–1099 (1986).

    Article  CAS  Google Scholar 

  6. Rigutto, M. in Zeolites and Catalysis: Synthesis, Reactions and Applications (eds Čejka, J., Corma, A. & Zones, S. I.) 547–584 (Wiley-VCH, 2010).

    Book  Google Scholar 

  7. Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995).

    Article  CAS  Google Scholar 

  8. Bomgardner, M. M. Using pore power. Chem. Eng. News 89, 20–21 (2011).

    Article  Google Scholar 

  9. Rawlence, D. J. & Gosling, K. FCC catalyst performance evaluation. Appl. Catal. 43, 213–237 (1988).

    Article  CAS  Google Scholar 

  10. Chao, K. J., Lin, L. H., Ling, Y. C., Hwang, J. F. & Hou, L. Y. Vanadium passivation of cracking catalysts by imaging secondary ion mass spectrometry. Appl. Catal. A 121, 217–229 (1995).

    Article  CAS  Google Scholar 

  11. Kugler, E. L. & Leta, D. P. Nickel and vanadium on equilibrium cracking catalysts by imaging secondary ion mass spectrometry. J. Catal. 109, 387–395 (1988).

    Article  CAS  Google Scholar 

  12. Cao, H. & Suib, S. L. Spectroscopic studies of the migration of vanadium in the model fluid catalytic cracking process. Appl. Spectrosc. 49, 1454–1462 (1995).

    Article  CAS  Google Scholar 

  13. Lappas, A. A., Nalbandian, L., Iatridis, D. K., Voutetakis, S. S. & Vasalos, I. A. Effect of metals poisoning on FCC products yields: studies in an FCC short contact time pilot plant unit. Catal. Today 65, 233–240 (2001).

    Article  CAS  Google Scholar 

  14. Haas, A., Suarez, W. & Young, G. W. Evaluation of metals contaminated FCC catalysts. AIChE Symposium Series 133–142 (1992).

  15. Occelli, M. L., Gould, S. A. C. & Stucky, G. D. The study of the surface topography of microporous materials using atomic force microscopy. Stud. Surf. Sci. Catal. 485–492 (1994).

  16. Psarras, A. C., Iliopoulou, E. F., Nalbandian, L., Lappas, A. A. & Pouwels, C. Study of the accessibility effect on the irreversible deactivation of FCC catalysts from contaminant feed metals. Catal. Today 127, 44–53 (2007).

    Article  CAS  Google Scholar 

  17. Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nature Rev. Mol. Cell Biol. 3, 906–918 (2002).

    Article  CAS  Google Scholar 

  18. Krutzik, P. O. & Nolan, G. P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nature Methods 3, 361–368 (2006).

    Article  CAS  Google Scholar 

  19. Martin, B. R., Giepmans, B. N. G., Adams, S. R. & Tsien, R. Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nature Biotechnol. 23, 1308–1314 (2005).

    Article  CAS  Google Scholar 

  20. Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I. & Melton, D. A. Development: insulin staining of ES cell progeny from insulin uptake. Science 299, 363 (2003).

    PubMed  Google Scholar 

  21. Darzynkiewicz, Z., Bedner, E., Li, X., Gorczyca, W. & Melamed, M. R. Laser-scanning cytometry: a new instrumentation with many applications. Exp. Cell Res. 249, 1–12 (1999).

    Article  CAS  Google Scholar 

  22. Marks, K. M. & Nolan, G. P. Chemical labeling strategies for cell biology. Nature Methods 3, 591–596 (2006).

    Article  CAS  Google Scholar 

  23. Karwacki, L. et al. Morphology-dependent zeolite intergrowth structures leading to distinct internal and outer-surface molecular diffusion barriers. Nature Mater. 8, 959–965 (2009).

    Article  CAS  Google Scholar 

  24. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  25. Xu, W., Kong, J. S., Yeh, Y. T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nature Mater. 7, 992–996 (2008).

    Article  CAS  Google Scholar 

  26. Naito, K., Tachikawa, T., Fujitsuka, M. & Majima, T. Single-molecule observation of photocatalytic reaction in TiO2 nanotube: importance of molecular transport through porous structures. J. Am. Chem. Soc. 131, 934–936 (2009).

    Article  CAS  Google Scholar 

  27. De Cremer, G., Sels, B. F., De Vos, D. E., Hofkens, J. & Roeffaers, M. B. J. Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39, 4703–4717 (2010).

    Article  CAS  Google Scholar 

  28. Chen, P. et al. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 39, 4560–4570 (2010).

    Article  CAS  Google Scholar 

  29. Tachikawa, T. & Majima, T. Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions. Chem. Soc. Rev. 39, 4802–4819 (2010).

    Article  CAS  Google Scholar 

  30. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  31. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  32. Roeffaers, M. B. J. et al. Morphology of large ZSM-5 crystals unraveled by fluorescence microscopy. J. Am. Chem. Soc. 130, 5763–5772 (2008).

    Article  CAS  Google Scholar 

  33. Seebacher, C. et al. Visualization of mesostructures and organic guest inclusion in molecular sieves with confocal microscopy. Adv. Mater. 13, 1374–1377 (2001).

    Article  CAS  Google Scholar 

  34. Kox, M. H. F., Mijovilovich, A., Sättler, J. J. H. B., Stavitski, E. & Weckhuysen, B. M. The catalytic conversion of thiophenes over large H-ZSM-5 crystals: an X-ray, UV/vis, and fluorescence microspectroscopic study. ChemCatChem 2, 564–571 (2010).

    Article  CAS  Google Scholar 

  35. Kox, M. H. F. et al. Label-free chemical imaging of catalytic solids by coherent anti-Stokes Raman scattering and synchrotron-based infrared microscopy. Angew. Chem. Int. Ed. 48, 8990–8994 (2009).

    Article  CAS  Google Scholar 

  36. Rautiainen, E., Pimenta, R., Ludvig, M. & Pouwels, C. Deactivation of ZSM-5 additives in laboratory for realistic testing. Catal. Today 140, 179–186 (2009).

    Article  CAS  Google Scholar 

  37. Bendiksen, M., Tangstad, E. & Myrstad, T. A comparison of laboratory deactivation methods for FCC catalysts. Appl. Catal. A 129, 21–31 (1995).

    Article  CAS  Google Scholar 

  38. Psarras, A. C., Iliopoulou, E. F., Kostaras, K., Lappas, A. A. & Pouwels, C. Investigation of advanced laboratory deactivation techniques of FCC catalysts via FTIR acidity studies. Microporous Mesoporous Mater. 120, 141–146 (2009).

    Article  CAS  Google Scholar 

  39. Mitchell, B. R. Metal contamination of cracking catalysts. 1. Synthetic metals deposition on fresh catalysts. Ind. Eng. Chem. Prod. Res. Dev. 19, 209–213 (1980).

    Article  CAS  Google Scholar 

  40. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  41. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article  CAS  Google Scholar 

  42. Chen, N. Y., Mitchell, T. O., Olson, D. H. & Pelrine, B. P. Irreversible deactivation of zeolite fluid cracking catalyst. 2. Hydrothermal stability of catalysts containing NH4Y and rare earth Y. Ind. Eng. Chem. Prod. Res. Dev. 16, 247–252 (1977).

    Article  CAS  Google Scholar 

  43. Chen, D. et al. Acidity studies of fluid catalytic cracking catalysts by microcalorimetry and infrared spectroscopy. J. Catal. 136, 392–402 (1992).

    Article  CAS  Google Scholar 

  44. Farneth, W. E. & Gorte, R. J. Methods for characterizing zeolite acidity. Chem. Rev. 95, 615–635 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Albemarle Catalysts for financial support and for providing catalyst materials, catalytic performance data and part of the bulk characterization data. J.R.M. acknowledges the ACTS-Aspect program for funding. The authors thank F. Soulimani (Utrecht University) for help with the IR measurements, M. Versluijs-Helder (Utrecht University) for the XRD measurements, U. Deka (Utrecht University) for the calculations of the unit cell sizes, A. Ruppert (Technical University of Lodz) for the design of Fig. 1a and the graphical abstract and J. Francis (Albemarle Corporation) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

I.L.C.B. and J.R.M. contributed equally to this work. They carried out the experiments, the statistical analysis and wrote the manuscript. W.V.K. contributed to the catalytic activity tests and discussion thereof and participated in manuscript preparation. D.B., J.A.B. and E.T.C.V. contributed to the discussion of the results. B.M.W. designed and directed the research, and contributed to the preparation and writing of the manuscript.

Corresponding author

Correspondence to Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buurmans, I., Ruiz-Martínez, J., Knowles, W. et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. Nature Chem 3, 862–867 (2011). https://doi.org/10.1038/nchem.1148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing