Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA

Abstract

The construction of a protocell from a materials point of view is important in understanding the origin of life. Both self-reproduction of a compartment and self-replication of an informational substance have been studied extensively, but these processes have typically been carried out independently, rather than linked to one another. Here, we demonstrate the amplification of DNA (encapsulated guest) within a self-reproducible cationic giant vesicle (host). With the addition of a vesicular membrane precursor, we observe the growth and spontaneous division of the giant vesicles, accompanied by distribution of the DNA to the daughter giant vesicles. In particular, amplification of the DNA accelerated the division of the giant vesicles. This means that self-replication of an informational substance has been linked to self-reproduction of a compartment through the interplay between polyanionic DNA and the cationic vesicular membrane. Our self-reproducing giant vesicle system therefore represents a step forward in the construction of an advanced model protocell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the chemical link between amplification of DNA and self-reproduction of GVs.
Figure 2: Amplification of DNA inside GVs and growth-and-division of DNA-amplified GVs.
Figure 3: Influence of the amount of amplified DNA on the division frequency of DNA-amplified GVs stained by rhodamine-tagged lipids.
Figure 4: Effect of amplified encapsulated DNA on the dynamics of self-reproducing GVs.

References

  1. Luisi, P. L. The Emergence of Life: From Chemical Origins to Synthetic Biology (Cambridge Univ. Press, 2006).

  2. Gardner, P. M., Winzer, K. & Davis, B. D. Sugar synthesis in a protocellular model leads to a cell signaling response in bacteria. Nature Chem. 1, 377–383 (2009).

    Article  CAS  Google Scholar 

  3. Gibson, D. G. et al. Creation of bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  Google Scholar 

  4. Walde, P. Building artificial cells and protocell models: experimental approaches with lipid vesicles. Bioessays 32, 296–303 (2010).

    Article  CAS  Google Scholar 

  5. Luisi, P. L., Ferri, F. & Stano, P. Approaches to semi-synthetic minimal cells: a review. Naturwissenschaften 93, 1–13 (2006).

    Article  CAS  Google Scholar 

  6. Stano, P. & Luisi, P. L. Achievement and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639–3653 (2010).

    Article  CAS  Google Scholar 

  7. Fleischaker, G. R., Colonna, S. & Luisi, P. L. (eds) Self-Production of Supramolecular Structures: From Synthetic Structures to Models of Minimal Living Systems (Kluwer, 1994).

  8. Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).

    Article  CAS  Google Scholar 

  9. Szostak, J. W., Bartel, D. P. & Luisi P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article  CAS  Google Scholar 

  10. Gesteland, R. F., Cech, T. R. & Atkins, J. F. (eds) The RNA World 3rd edn (Cold Spring Harbor Laboratory Press, 2005).

  11. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article  CAS  Google Scholar 

  12. Segré, D., Ben-Eli, D., Deamer, D. & Lancet, D. The lipid world. Orig. Life Evol. Biosph. 1–2, 119–145 (2001).

    Article  Google Scholar 

  13. Mansy, S. S., Schrum, J. P., Krishnamurthy, M., Tobé S., Treco, D. A. & Szostak, J. W. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008).

    Article  CAS  Google Scholar 

  14. Mansy, S. S. & Szostak, J. W. Thermostability of model protocell membranes. Proc. Natl. Acad. Sci. USA 105, 13351–13355 (2008).

    Article  CAS  Google Scholar 

  15. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible condition. Nature 459, 239–242 (2009).

    Article  CAS  Google Scholar 

  16. Powner, M. W., Sutherland, J. D. & Szostak, J. W. Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc. 132, 16677–16688 (2010).

    Article  CAS  Google Scholar 

  17. Oberholzer, T., Albrizio, M. & Luisi, P. L. Polymerase chain reaction in liposome. Chem. Biol. 2, 677–682 (1995).

    Article  CAS  Google Scholar 

  18. Chakrabarti, A. C., Breaker, R. R., Joyce, G. F. & Deamer, D. W. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. J. Mol. Evol. 39, 555–559 (1994).

    Article  CAS  Google Scholar 

  19. Walde, P., Goto, A., Monnard, P-A., Wessicken, M. & Luisi, P. L. Oparin's reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J. Am. Chem. Soc. 116, 7541–7547 (1994).

    Article  CAS  Google Scholar 

  20. Zepik, H. H. & Walde, P. Achievements and challenges in generating protocell models. ChemBioChem 9, 2771–2772 (2008).

    Article  CAS  Google Scholar 

  21. Chiarabelli, C., Stano, P. & Luisi, P. L. Chemical approaches to synthetic biology. Curr. Opin. Biotechnol. 20, 492–497 (2009).

    Article  CAS  Google Scholar 

  22. Kuruma, Y., Stano, P., Ueda, T. & Luisi, P. L. A synthetic biology approach to the construction of membrane proteins in semi-synthetic minimal cells. Biochim. Biophys. Acta. 1788, 567–574 (2009).

    Article  CAS  Google Scholar 

  23. Sunami, T., Hosoda, K., Suzuki, H., Matsuura, T. & Yomo, T. Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir 26, 8544–8551 (2010).

    Article  CAS  Google Scholar 

  24. Nomura, S. M. et al. Gene expression within cell-sized lipid vesicles. ChemBioChem. 4, 1172–1175 (2003).

    Article  CAS  Google Scholar 

  25. Kita, H. et al. Replication of genetic information with self-encoded replicase in liposomes. ChemBioChem. 9, 2403–2410 (2008).

    Article  CAS  Google Scholar 

  26. Oberholzer, T., Wick, R., Luisi, P. L. & Biebricher, C. K. Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. Comm. 207, 250–257 (1995).

    Article  CAS  Google Scholar 

  27. Atwood, J. L., Davies, J. E. D., Macnicol, D. D., Vögtle, F. & Lehn, J-M. (eds) Comprehensive Supramolecular Chemistry (Pergamon, 1996).

  28. Lehn, J-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, 1995).

  29. Ariga, K. & Kunitake, T. Supramolecular Chemistry—Fundamentals and Applications (Springer, 2006).

  30. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  Google Scholar 

  31. Suzuki, K., Toyota, T., Takakura, K. & Sugawara, T. Sparkling morphological changes and spontaneous movements of self-assemblies in water induced by chemical reactions. Chem. Lett. 38, 1010–1015 (2009).

    Article  CAS  Google Scholar 

  32. Takakura, K., Toyota, T. & Sugawara, T. A novel system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125, 8134–8140 (2003).

    Article  CAS  Google Scholar 

  33. Takakura, K. & Sugawara, T. Membrane dynamics of a myelin-like giant multilamellar vesicle applicable to a self-reproducing system. Langmuir 20, 3832–3834 (2004).

    Article  CAS  Google Scholar 

  34. Toyota, T. et al. Population study of sizes and components of self-reproducing giant multilamellar vesicles. Langmuir 24, 3037–3044 (2008).

    Article  CAS  Google Scholar 

  35. Kurihara, K., Takakura, K., Suzuki, K., Toyota, T. & Sugawara, T. Cell-sorting of robust self-reproducing giant vesicles tolerant to a highly ionic medium. Soft Matter 6, 1888–1891 (2010).

    Article  CAS  Google Scholar 

  36. Shohda, K. et al. Compartment size dependence of performance of polymerase chain reaction inside giant vesicle. Soft Matter 7, 3750–3753 (2011).

    Article  CAS  Google Scholar 

  37. Gánti, T. The Principles of Life (Oxford Univ. Press, 2003).

  38. de Souza, T. P., Stano, P. & Luisi, P. L. The minimal size of liposome-based model cells brings about remarkably enhanced entrapment and protein synthesis. ChemBioChem 11, 1056–1063 (2010).

    Google Scholar 

  39. Zipper, H., Brunner, H., Bernhagen, J. & Vitzthum, F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 32, e103 (2004).

    Article  Google Scholar 

  40. Fuhrhop, J-H. & Wang, T. Bolaamphiphiles. Chem. Rev. 104, 2901–2937 (2004).

    Article  CAS  Google Scholar 

  41. Rädler, J. O., Koltover, I., Salditt, T., & Safinya, C. R. Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275, 810–814 (1997).

    Article  Google Scholar 

  42. Angelova, M. I. & Tsoneva, I. Interactions of DNA with giant liposomes. Chem. Phys. Lipids 101, 123–137 (1999).

    Article  CAS  Google Scholar 

  43. Angelova, M. I., Histova, N. & Tsoneva, I. DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles. Eur. Biophys. J. 28, 142–150 (1999).

    Article  CAS  Google Scholar 

  44. Ogden, G. B., Pratt, M. J. & Schaechter, M. The replicative origin of the E. coli chromosome binds to cell membranes only when hemimethylated. Cell 54, 127–135 (1988).

    Article  CAS  Google Scholar 

  45. Maru, N., Shohda, K. & Sugawara, T. Successive fusion of vesicles aggregated by DNA duplex formation in the presence of Triton X-100. Chem. Lett. 37, 340–341 (2008).

    Article  CAS  Google Scholar 

  46. Pantos, A., Tsiourvas, D., Paleos, C. M. & Nounesis, G. Enhanced drug transport from unilamellar liposomes induced by molecular recognition of their lipid membranes. Langmuir 21, 6696–6702 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from KAKENHI (Grant-in Aid for Scientific Research) for Priority Area ‘Soft Matter Physics’ (area no. 463) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors also thank M.M. Hanczyc for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

T.S., K.K. and K.Su. conceived and designed the experiments. K.K. performed experiments. M.T. contributed the protocol. K.Su. contributed analysis. T.T. and K.Sh. contributed discussion of the data. T.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tadashi Sugawara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 859 kb)

Supplementary information

Supplementary Movie S1 (MOV 16976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurihara, K., Tamura, M., Shohda, Ki. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nature Chem 3, 775–781 (2011). https://doi.org/10.1038/nchem.1127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing