Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C–H and C=C oxidation reactions

Abstract

Oxo-transfer chemistry mediated by iron underpins many biological processes and today is emerging as synthetically very important for the catalytic oxidation of C–H and C=C moieties that are hard to activate conventionally. Despite the vast amount of research in this area, experimental characterization of the reactive species under catalytic conditions is very limited, although a Fe(V)=O moiety was postulated. Here we show, using variable-temperature mass spectrometry, the generation of a Fe(V)=O species within a synthetic non-haem complex at −40 °C and its reaction with an olefin. Also, with isotopic labelling we were able both to follow oxygen-atom transfer from H2O2/H2O through Fe(V)=O to the products and to probe the reactivity as a function of temperature. This study pioneers the implementation of variable-temperature mass spectrometry to investigate reactive intermediates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanistic proposals for the formation of formally oxo-iron(V) species.
Figure 2: Complex 1 catalyses the hydroxylation of alkanes and the cis-dihydroxylation of alkenes.
Figure 3: Change of intensity of 3O or 3P when the temperature is increased from −40 °C to 20 °C.
Figure 4: Mechanisms and shift of mass spectral peaks when H218O and H218O2 are used to give the Fe(V)(O)(OH) species.
Figure 5: Mechanisms and shift of mass spectral peaks when H218O and H218O2 are used to give the hydrogenglycolates 5 and the glycolates 4.
Figure 6: DFT Gibbs energy profile of the reaction between the oxo-iron(V) species 3O with trans-2-butene to form the hydrogenglycolate species 5.

Similar content being viewed by others

References

  1. Ortiz de Montellano, P. R. Cytochrome P450: Structure, Mechanism and Biochemistry 3rd edn (Kluwer Academic/Plenum, 2005).

    Book  Google Scholar 

  2. Ferraro, D. J., Gakhar, L. & Ramaswamy, S. Rieske business: structure–function of Rieske non-heme oxygenases. Biochem. Biophys. Res. Commun. 338, 175–190 (2005).

    Article  CAS  Google Scholar 

  3. Groves, J. T. High-valent iron in chemical and biological oxidations. J. Inorg. Biochem. 100, 434–447 (2006).

    Article  CAS  Google Scholar 

  4. Chakrabarty, S., Austin, R. N., Deng, D., Groves, J. T. & Lipscomb, J. D. Radical intermediates in monooxygenase reactions of Rieske dioxygenases. J. Am. Chem. Soc. 129, 3514–3515 (2007).

    Article  CAS  Google Scholar 

  5. Wolfe, M. D. et al. Benzoate 1,2-dioxygenase from Pseudomonas putida: single turnover kinetics and regulation of a two-component Rieske dioxygenase. Biochemistry 41, 9611–9626 (2002).

    Article  CAS  Google Scholar 

  6. Schlichting, I. et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622 (2000).

    Article  CAS  Google Scholar 

  7. Rittle, J. & Green, M. T. Cytochrome P450 compound I: capture, characterization, and C–H bond activation kinetics. Science 330, 933–937 (2010).

    Article  CAS  Google Scholar 

  8. Karlsson, A. et al. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron. Science 299, 1039–1042 (2003).

    Article  CAS  Google Scholar 

  9. Wolfe, M. D., Parales, J. V., Gibson, D. T. & Lipscomb, J. D. Single turnover chemistry and regulation of O2 activation by the oxygenase component of naphthalene 1,2-dioxygenase. J. Biol. Chem. 276, 1945–1953 (2001).

    Article  CAS  Google Scholar 

  10. Chen, M. S. & White, M. C. A predictable selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    Article  CAS  Google Scholar 

  11. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    Article  CAS  Google Scholar 

  12. Gomez, L. et al. Stereospecific CH oxidation with H2O2 catalyzed by a chemically robust site-isolated iron catalyst. Angew. Chem. Int. Ed. 48, 5720–5723 (2009).

    Article  CAS  Google Scholar 

  13. Que, L. & Tolman, W. B. Biologically inspired oxidation catalysis. Nature 455, 333–340 (2008).

    Article  CAS  Google Scholar 

  14. Wolfe, M. D. & Lipscomb, J. D. Hydrogen peroxide-coupled cis-diol formation catalyzed by naphthalene 1,2-dioxygenase. J. Biol. Chem. 278, 829–835 (2003).

    Article  CAS  Google Scholar 

  15. Chen, K. & Que, L. Jr Stereospecific alkane hydroxylation by nonheme iron catalysts: mechanistic evidence for an Fe(V)=O active species. J. Am. Chem. Soc. 123, 6327–6337 (2001).

    Article  CAS  Google Scholar 

  16. Chen, K., Costas, M., Kim, J., Tipton, A. K. & Que, L. Jr Olefin cis-dihydroxylation versus epoxidation by nonheme iron catalysts: two faces of an Fe(III)–OOH coin. J. Am. Chem. Soc. 124, 3026–3035 (2002).

    Article  CAS  Google Scholar 

  17. Bassan, A., Blomberg, M. R. A., Siegbahn, P. E. M. & Que, L. Jr Two faces of a biomimetic non-heme HO–Fe(V)=O oxidant: olefin epoxidation versus cis-dihydroxylation. Angew. Chem. Int. Ed. 44, 2939–2941 (2005).

    Article  CAS  Google Scholar 

  18. Company, A. et al. Alkane hydroxylation by a nonheme iron catalyst that challenges the heme paradigm for oxygenase action. J. Am. Chem. Soc. 129, 15766–15767 (2007).

    Article  CAS  Google Scholar 

  19. Company, A. et al. Olefin-dependent discrimination between two nonheme HO–Fe(V)=O tautomeric species in catalytic H2O2 epoxidations. Chem. Eur. J. 15, 3359–3362 (2009).

    Article  CAS  Google Scholar 

  20. Makhlynets, O. V. & Rybak-Akimova, E. V. Aromatic hydroxylation at a non-heme iron center: observed intermediates and insights into the nature of the active species. Chem. Eur. J. 16, 13995–14006 (2010).

    Article  CAS  Google Scholar 

  21. de Oliveira, F. T. et al. Chemical and spectroscopic evidence for an Fe(V)-oxo complex. Science 315, 835–838 (2007).

    Article  Google Scholar 

  22. Markert, C. & Pfaltz, A. Screening of chiral catalysts and catalyst mixtures by mass spectrometric monitoring of catalytic intermediates. Angew. Chem. Int. Ed. 43, 2498–2500 (2004).

    Article  CAS  Google Scholar 

  23. Feichtinger, D. & Plattner, D. A. Direct proof for O=Mn(V) (salen) complexes. Angew. Chem. Int. Ed. Engl. 36, 1718–1719 (1997).

    Article  CAS  Google Scholar 

  24. Miras, H. N., Wilson, E. F. & Cronin, L. Unravelling the complexities of inorganic and supramolecular self-assembly in solution with electrospray and cryospray mass spectrometry. Chem. Commun. 1297–1311 (2009).

  25. Wilson, E. F. et al. Probing the self-assembly of inorganic cluster architectures in solution with cryospray mass spectrometry: growth of polyoxomolybdate clusters and polymers mediated by silver(I) ions. J. Am. Chem. Soc. 130, 13876–13884 (2008).

    Article  CAS  Google Scholar 

  26. Yan, J., Long, D.-L., Wilson, E. F. & Cronin, L. Discovery of heteroatom-embedded Te{W18O54} nanofunctional polyoxometalates by use of cryospray mass spectrometry. Angew. Chem. Int. Ed. 48, 4376–4380 (2009).

    Article  CAS  Google Scholar 

  27. Lyakin, O. Y., Bryliakov, K. P., Britovsek, G. J. P. & Talsi, E. P. EPR spectroscopic trapping of the active species of nonheme iron-catalyzed oxidation. J. Am. Chem. Soc. 131, 10798–10799 (2009).

    Article  CAS  Google Scholar 

  28. Ho, R. Y. N., Roelfes, G., Feringa, B. L. & Que, L. Jr Raman evidence for a weakened O–O bond in mononuclear low-spin iron(III)-hydroperoxides. J. Am. Chem. Soc. 121, 264–265 (1999).

    Article  CAS  Google Scholar 

  29. Bassan, A., Blomberg, M. R. A., Siegbahn, P. E. M. & Que, L. Jr A density functional study of O–O bond cleavage for a biomimetic non-heme iron complex demonstrating an Fe(V)-intermediate. J. Am. Chem. Soc. 124, 11056–11063 (2002).

    Article  CAS  Google Scholar 

  30. Quinonero, D., Morokuma, K., Musaev, D. G., Mas-Balleste, R. & Que, L. Jr Metal-peroxo versus metal-oxo oxidants in non-heme iron-catalyzed olefin oxidations: computational and experimental studies on the effect of water. J. Am. Chem. Soc. 127, 6548–6549 (2005).

    Article  CAS  Google Scholar 

  31. Ensing, B., Buda, F. & Baerends, E. J. Fenton-like chemistry in water: oxidation catalysis by Fe(III) and H2O2 . J. Phys. Chem. A 107, 5722–5731 (2003).

    Article  CAS  Google Scholar 

  32. Chow, T. W-S. et al. Cis-dihydroxylation of alkenes with Oxone catalyzed by iron complexes of a macrocyclic tetraaza ligand and reaction mechanism by ESI-MS spectrometry and DFT calculations. J. Am. Chem. Soc. 132, 13229–13239 (2010).

    Article  CAS  Google Scholar 

  33. Comba, P., Rajaraman, G. & Rohwer, H. A. Density functional theory study of the reaction of the biomimetic iron(II) complex of a tetradentate bispidine ligand with H2O2 . Inorg. Chem. 46, 3826–3838 (2007).

    Article  CAS  Google Scholar 

  34. Bukowski, M. R. et al. Catalytic epoxidation and 1,2-dihydroxylation of olefins with bispidine-iron(II)/H2O2 systems. Angew. Chem. Int. Ed. 45, 3446–3449 (2006).

    Article  CAS  Google Scholar 

  35. Oldenburg, P. D., Feng, Y., Pryjomska-Ray, I., Ness, D. & Que, L. Jr Olefin cis-dihydroxylation with bio-inspired iron catalysts. Evidence for an Fe(II)/Fe(IV) catalytic cycle. J. Am. Chem. Soc. 132, 17713–17723 (2010).

    Article  CAS  Google Scholar 

  36. Company, A. et al. Modelling the cis-oxo-labile binding site motif of non-heme iron oxygenases. Water exchange and remarkable oxidation reactivity of a novel non-heme iron(IV)-oxo compound bearing a tripodal tetradentate ligand. Chem. Eur. J. 17, 1622–1634 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council and WestCHEM for funding, and Bruker Daltonics for collaboration. L.C. thanks the Royal Society and Wolfson Research for a merit award. M.C. and X.R. thank the Ministerio de Ciencia e Innovación (MICINN) for Project CTQ2009-08464, and Generalitat de Catalunya for Institució Catalana de Recerca i Estudis Avançats Academia Awards. M.C. thanks the European Research Foundation for Project ERC-2009-StG-239910. I.P. thanks MICINN for a PhD grant. L.C. and M.C. thank COST Action D40.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and M.C. devised the initial concept for the work, L.C., M.C., X.R., J.S.M., I.P., J.M.L. and M.G. designed the experiments and J.S.M., M.G. and I.P. carried out the experiments and analysed the data. M.C. and L.C. co-wrote the manuscript.

Corresponding authors

Correspondence to Leroy Cronin or Miquel Costas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prat, I., Mathieson, J., Güell, M. et al. Observation of Fe(V)=O using variable-temperature mass spectrometry and its enzyme-like C–H and C=C oxidation reactions. Nature Chem 3, 788–793 (2011). https://doi.org/10.1038/nchem.1132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing