Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes

Abstract

Atomically thin sheets of sp2-hybridized carbon—graphene—have enormous potential for applications in future electronic devices. Particularly promising are nanostructured (sub)units of graphene, the electronic properties of which can be tuned by changing the spatial extent or the specific edge termination of the carbon network. Processability and precise tailoring of graphene-derived structures are, however, still major obstacles in developing applications; both bottom-up and top-down routes are presently under investigation in attempts to overcome this limitation. Here, we propose a surface chemical route that allows for the atomically precise fabrication of tailored nanographenes from polyphenylene precursors. The cyclodehydrogenation of a prototypical polyphenylene on Cu(111) is studied using scanning tunnelling microscopy and density functional theory. We find that the thermally induced cyclodehydrogenation proceeds via several intermediate steps, two of which can be stabilized on the surface, yielding unprecedented insight into a dehydrogenative intramolecular aryl–aryl coupling reaction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Overview STM images of CHP cyclodehydrogenation on Cu(111).
Figure 3: High-resolution STM images of reactant, intermediates and final product on Cu(111).
Figure 4: Relaxed geometry of CHP on Cu(111).
Figure 5: Computational simulations of surface-supported cyclodehydrogenation.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  3. Müllen, K. & Rabe, J. P. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. Acc. Chem. Res. 41, 511–520 (2008).

    Article  Google Scholar 

  4. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

    Article  CAS  Google Scholar 

  5. Sutter, P. W., Flege, J. I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

    Article  CAS  Google Scholar 

  6. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  7. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  8. Zhi, L. J. & Müllen, K. A bottom-up approach from molecular nanographenes to unconventional carbon materials. J. Mater. Chem. 18, 1472–1484 (2008).

    Article  CAS  Google Scholar 

  9. Rouhanipour, A., Schmaltz, B., Räder, H. J., Pisula, W. & Müllen, K. Filling the cavity of conjugated carbazole macrocycles with graphene molecules: monolayers formed by physisorption serve as a surface for pulsed laser deposition. Angew. Chem. Int. Ed. 48, 720–724 (2009).

    Article  Google Scholar 

  10. Vitali, L. et al. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets. Nano Lett. 8, 3364–3368 (2008).

    Article  CAS  Google Scholar 

  11. Rauschenbach, S. et al. Electrospray ion-beam deposition of clusters and biomolecules. Small 2, 540–547 (2006).

    Article  CAS  Google Scholar 

  12. Satterley, C. J. et al. Electrospray deposition of fullerenes in ultra-high vacuum: in situ scanning tunneling microscopy and photoemission spectroscopy. Nanotechnology 18, 455304 (2007).

    Article  Google Scholar 

  13. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

    Article  CAS  Google Scholar 

  14. Perepichka, D. F. & Rosei, F. Extending polymer conjugation into the second dimension. Science 323, 216–217 (2009).

    Article  CAS  Google Scholar 

  15. Lipton-Duffin, J. A. et al. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    Article  CAS  Google Scholar 

  16. Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

    Article  CAS  Google Scholar 

  17. Treier, M. et al. Molecular imaging of monolayer polyimide formation. Phys. Chem. Chem. Phys. 11, 1209–1214 (2009).

    Article  CAS  Google Scholar 

  18. Veld, M. I. et al. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Commun. 1536–1538 (2008).

  19. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  20. Matena, M. et al. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

    Article  CAS  Google Scholar 

  21. Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

    Article  CAS  Google Scholar 

  22. Rim, K. T. et al. Forming aromatic hemispheres on transition-metal surfaces. Angew. Chem. Int. Ed. 46, 7891–7895 (2007).

    Article  CAS  Google Scholar 

  23. Otero, G. et al. Fullerenes from aromatic precursors by surface-catalysed cyclodehydrogenation. Nature 454, 865–868 (2008).

    Article  CAS  Google Scholar 

  24. Beernink, G. et al. Synthesis of polycyclic aromatic hydrocarbons and graphite islands via surface-induced reaction of small molecules. Chem. Phys. Chem. 2, 317–320 (2001).

    Article  CAS  Google Scholar 

  25. Weiss, K. et al. Template-mediated synthesis of polycyclic aromatic hydrocarbons: cyclodehydrogenation and planarization of a hexaphenylbenzene derivative at a copper surface. Angew. Chem. Int. Ed. 38, 3748–3752 (1999).

    Article  CAS  Google Scholar 

  26. Fujioka, Y. Studies of polyphenyls and polyphenylenes. 13. Syntheses and physical properties of several polyphenylenes containing mixed linkages. Bull. Chem. Soc. Jpn 57, 3494–3506 (1984).

    Article  CAS  Google Scholar 

  27. Rempala, P., Kroulik, J. & King, B. T. Investigation of the mechanism of the intramolecular Scholl reaction of contiguous phenylbenzenes. J. Org. Chem. 71, 5067–5081 (2006).

    Article  CAS  Google Scholar 

  28. Rempala, P., Kroulik, J. & King, B. T. A slippery slope: mechanistic analysis of the intramolecular Scholl reaction of hexaphenylbenzene. J. Am. Chem. Soc. 126, 15002–15003 (2004).

    Article  CAS  Google Scholar 

  29. Lesnard, H., Bocquet, M. L. & Lorente, N. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations. J. Am. Chem. Soc. 129, 4298–4305 (2007).

    Article  CAS  Google Scholar 

  30. Lesnard, H., Lorente, N. & Bocquet, M. L. Theoretical study of benzene and pyridine STM-induced reactions on copper surfaces. J. Phys. Condens. Matter 20, 224012 (2008).

    Article  Google Scholar 

  31. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  32. Zwanzig, R. Nonequilibrium Statistical Mechanics (Oxford Univ. Press, 2001).

    Google Scholar 

  33. Rieger, R. et al. Entry to coronene chemistry—making large electron donors and acceptors. Eur. J. Chem. 14, 6322–6325 (2008).

    Article  CAS  Google Scholar 

  34. Scholl, R. & Seer, C. Abspaltung aromatisch gebundenen Wasserstoffs und Verknüpfung aromatischer Kerne durch Aluminiumchlorid. Justus Liebigs Ann. Chem. 394, 111–177 (1912).

    Article  Google Scholar 

  35. Bradley, W. & Sutcliffe, F. K. The occurrence of direct hydroxylation and self-condensation in the action of potassium hydroxide on three isomeric benzo-derivatives of meso-benzanthrone. J. Chem. Soc. 1247–1251 (1952).

  36. Pummerer, R., Prell, E. & Rieche, A. Darstellung von Binaphthylendioxyd. Berichte Der Deutschen Chemischen Gesellschaft 59, 2159–2161 (1926).

    Article  Google Scholar 

  37. Hansch, C. & Geiger, C. Notes—a new synthesis for triphenylene. J. Org. Chem. 23, 477–478 (1958).

    Article  CAS  Google Scholar 

  38. Kharasch, N. et al. The photochemical conversion of o-terphenyl into triphenylene. Chem. Commun. 242–243 (1965).

  39. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 6919–6921 (2009).

  40. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111) and Ag(110). Chem. Commun. 4456–4458 (2009).

  41. Xue, X. & Scott, L. T. Thermal cyclodehydrogenations to form 6-membered rings: cyclizations of [5]helicenes. Org. Lett. 9, 3937–3940 (2007).

    Article  CAS  Google Scholar 

  42. Pignedoli, C. A. et al. A simple approach for describing metal-supported cyclohexaphenylene dehydrogenation. Eur. Phys. J. B 75, 65–70 (2010).

    Article  CAS  Google Scholar 

  43. Ruffieux, P. et al. Self-assembly of extended polycyclic aromatic hydrocarbons on Cu(111). J. Phys. Chem. B 110, 11253–11258 (2006).

    Article  CAS  Google Scholar 

  44. Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    Article  CAS  Google Scholar 

  45. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  46. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 54, 16533–16539 (1996).

    Article  CAS  Google Scholar 

  48. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  49. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Swiss National Science Foundation and the generous allocation of computing time at the CSCS. The authors thank P. Ruffieux for stimulating discussions and T. Greber for providing access to his NearNode-endstation for the XPD experiments. Parts of these experiments were performed on the SIM beamline at the Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

M.T. performed the STM measurements, analysed the data and wrote the manuscript together with C.P. and R.F. C.P. and T.L. performed the simulations in collaboration with D.P. R.R. synthesized the molecular substances under the supervision of K.M. R.F. conceived the experiments and coordinated the work. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Roman Fasel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treier, M., Pignedoli, C., Laino, T. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nature Chem 3, 61–67 (2011). https://doi.org/10.1038/nchem.891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing