Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals

Abstract

Atmospheric aerosol particles play pivotal roles in climate and air quality. Just as chemically reduced gases experience oxidation in the atmosphere, it is now apparent that solid and liquid atmospheric particulates are also subject to similar oxidative processes. The most reactive atmospheric gas-phase radicals, in particular the hydroxyl radical, readily promote such chemistry through surficial interactions. This Review looks at progress made in this field, discussing the radical-initiated heterogeneous oxidation of organic and inorganic constituents of atmospheric aerosols. We focus on the kinetics and reaction mechanisms of such processes as well as how they can affect the physico–chemical properties of particles, such as their composition, size, density and hygroscopicity. Potential impacts on the atmosphere include the release of chemically reactive gases such as halogens, aldehydes and organic acids, reactive loss of particle-borne molecular tracer and toxic species, and enhanced hygroscopic properties of aerosols that may improve their ability to form cloud droplets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized illustration of the processes that govern heterogeneous radical uptake by an aerosol particle.
Figure 2: Reaction mechanism for OH-initiated heterogeneous oxidation of an organic component (RH) of an aerosol particle.
Figure 3: O2 dependency of oxidation product yields in organic particles.
Figure 4: Gaseous halogen oxidation products from frozen seawater.
Figure 5: Heterogeneous oxidation of ambient aerosol particles.
Figure 6: Evolution of particle mass and oxygen content with heterogeneous oxidation.
Figure 7: Changes in hygroscopicity of model organic aerosol particles owing to radical oxidation.

Similar content being viewed by others

References

  1. IPCC in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 1–18 (Cambridge Univ. Press, 2007).

  2. Pope, C. A. III, Ezzati, M. & Dockery, D. W. Fine-particulate air pollution and life expectancy in the united states. N. Engl. J. Med. 360, 376–386 (2009).

    Article  CAS  Google Scholar 

  3. Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 37, 275–316 (1999).

    Article  CAS  Google Scholar 

  4. Robinson, A. L. et al. Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science 315, 1259–1262 (2007).

    Article  CAS  Google Scholar 

  5. Kroll, J. H. & Seinfeld, J. H. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmos. Environ. 42, 3593–3624 (2008).

    Article  CAS  Google Scholar 

  6. Zhang, Q. et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 34, L13801 (2007).

    Google Scholar 

  7. De Gouw, J. & Jimenez, J. L. Organic aerosols in the earth's atmosphere. Environ. Sci. Technol. 43, 7614–7618 (2009).

    Article  CAS  Google Scholar 

  8. Rudich, Y. Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev. 103, 5097–5124 (2003).

    Article  CAS  Google Scholar 

  9. Rudich, Y., Donahue, N. M. & Mentel, T. F. Aging of organic aerosol: Bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 58, 321–352 (2007).

    Article  CAS  Google Scholar 

  10. Atkinson, R. Gas-phase tropospheric chemistry of volatile organic compounds. 1. Alkanes and alkenes. J. Phys. Chem. 26, 215–290 (1997).

    CAS  Google Scholar 

  11. Cooper, P. L. & Abbatt, J. P. D. Heterogeneous interactions of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter. J. Phys. Chem. 100, 2249–2254 (1996).

    Article  CAS  Google Scholar 

  12. Bertram, A. K., Ivanov, A. V., Hunter, M., Molina, L. T. & Molina, M. J. The reaction probability of OH on organic surfaces of tropospheric interest. J. Phys. Chem. A 105, 9415–9421 (2001).

    Article  CAS  Google Scholar 

  13. Molina, M. J., Ivanov, A. V., Trakhtenberg, S. & Molina, L. T. Atmospheric evolution of organic aerosol. Geophys. Res. Lett. 31, L22104 (2004).

    Article  Google Scholar 

  14. Moise, T. & Rudich, Y. Uptake of Cl and Br by organic surfaces - a perspective on organic aerosols processing by tropospheric oxidants. Geophys. Res. Lett. 28, 4083–4086 (2001).

    Article  CAS  Google Scholar 

  15. Hearn, J. D. & Smith, G. D. A mixed-phase relative rates technique for measuring aerosol reaction kinetics. Geophys. Res. Lett. 33, L17805 (2006).

    Article  Google Scholar 

  16. George, I. J., Vlasenko, A., Slowik, J. G., Broekhuizen, K. & Abbatt, J. P. D. Heterogeneous oxidation of saturated organic aerosols by hydroxyl radicals: uptake kinetics, condensed-phase products, and particle size change. Atmos. Chem. Phys. 7, 4187–4201 (2007).

    Article  CAS  Google Scholar 

  17. Lambe, A. T., Zhang, J. Y., Sage, A. M. & Donahue, N. M. Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies. Environ. Sci. Technol. 41, 2357–2363 (2007).

    Article  CAS  Google Scholar 

  18. Lambe, A. T., Miracolo, M. A., Hennigan, C. J., Robinson, A. L. & Donahue, N. M. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. Environ. Sci. Technol. 43, 8794–8800 (2009).

    Article  CAS  Google Scholar 

  19. Hearn, J. D., Renbaum, L. H., Wang, X. & Smith, G. D. Kinetics and products from reaction of Cl radicals with dioctyl sebacate (DOS) particles in O2: a model for radical-initiated oxidation of organic aerosols. Phys. Chem. Chem. Phys. 9, 4803–4813 (2007).

    Article  CAS  Google Scholar 

  20. Smith, J. D. et al. The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols. Atmos. Chem. Phys. 9, 3209–3222 (2009).

    Article  CAS  Google Scholar 

  21. McNeill, V. F., Yatavelli, R. L. N., Stipe, C. B. & Landgrebe, O. Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and role of particle phase. Atmos. Chem. Phys. 8, 5465–5476 (2008).

    Article  CAS  Google Scholar 

  22. Moise, T., Talukdar, R. K., Frost, G. J., Fox, R. W. & Rudich, Y. Reactive uptake of NO3 by liquid and frozen organics. J. Geophys. Res. Atmos. 107, 4014 (2002).

    Article  Google Scholar 

  23. Gross, S., Iannone, S. X., Xiao, S. & Bertram, A. K. Reactive uptake studies of NO3 and N2O5 on alkenoic acid, alkanoate, and polyalcohol substrates to probe nighttime aerosol chemistry. Phys. Chem. Chem. Phys. 11, 7792–7803 (2009).

    Article  CAS  Google Scholar 

  24. Jech, D. D., Easley, P. G. & Krieger, B. B. Heterogeneous Atmospheric Chemistry 107–121 (American Geophysical Union, 1982).

    Book  Google Scholar 

  25. Ivanov, A. V., Gershenzon, Y. M., Gratpanche, F., Devolder, P. & Sawerysyn, J.-P. Heterogeneous loss of OH on NaCl and NH4NO3 at tropospheric temperatures. Ann. Geophys. 14, 659–664 (1996).

    CAS  Google Scholar 

  26. Gershenzon, Y. M., Ivanov, A. V., Kucheryavyi, S. I. & Rozenshtein, V. B. Annihilation of OH radicals on the surfaces of substances chemically similar to atmospheric aerosol particles. Kinet. Catal. 27, 923–927 (1986).

    Google Scholar 

  27. Hanson, D. R., Burkholder, J. B., Howard, C. J. & Ravishankara, A. R. Measurement of OH and HO2 radical uptake coefficients on water and sulfuric-acid surfaces J. Phys. Chem. 96, 4979–4985 (1992).

    Article  CAS  Google Scholar 

  28. Laskin, A. et al. A new approach to determining gas-particle reaction probabilities and application to the heterogeneous reaction of deliquesced sodium chloride particles with gas-phase hydroxyl radicals. J. Phys. Chem. A 110, 10619–27 (2006).

    Article  CAS  Google Scholar 

  29. Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T. & Worsnop, D. R. Mass accommodation and chemical reactions at gas-liquid interfaces. Chem. Rev. 106, 1323–1354 (2006).

    Article  CAS  Google Scholar 

  30. Renbaum, L. H. & Smtih, G. D. The importance of phase in the radical-initiated oxidation of model organic aerosols: reactions of solid and liquid brassidic acid particles. Phys. Chem. Chem. Phys. 11, 2441–2451 (2009).

    Article  CAS  Google Scholar 

  31. Moise, T. & Rudich, Y. Reactive uptake of ozone by aerosol-associated unsaturated fatty acids: Kinetics, mechanism, and products. J. Phys. Chem. A 106, 6469–6476 (2002).

    Article  CAS  Google Scholar 

  32. Hearn, J. D. & Smith, G. D. Measuring rates of reaction in supercooled organic particles with implications for atmospheric aerosol. Phys. Chem. Chem. Phys. 7, 2549–2551 (2005).

    Article  CAS  Google Scholar 

  33. Katrib, Y. et al. Ozonolysis of mixed oleic-acid/stearic-acid particles: Reaction kinetics and chemical morphology. J. Phys. Chem. A 109, 10910–10919 (2005).

    Article  CAS  Google Scholar 

  34. Knopf, D. A., Anthony, L. M. & Bertram, A. K. Reactive uptake of O3 by multicomponent and multiphase mixtures containing oleic acid. J. Phys. Chem. A 109, 5579–5589 (2005).

    Article  CAS  Google Scholar 

  35. Hanson, D. R., Ravishankara, A. R. & Solomon, S. Heterogeneous reactions in sulfuric acid aerosols: A framework for model calculations. J. Geophys. Res. 99, 3615–3629 (1994).

    Article  CAS  Google Scholar 

  36. Steinfeld, J. I., Francisco, J. S. & Hase W. L. Chemical Kinetics and Dynamics (Prentice Hall, 1998).

    Google Scholar 

  37. Bagot, P. A. J., Waring, C., Costen, M. L. & McKendrick, K. G. Dynamics of inelastic scattering of OH radicals from reactive and inert liquid surfaces. J. Phys. Chem. C 112, 10868–10877 (2008).

    Article  CAS  Google Scholar 

  38. Vlasenko, A., George, I. J. & Abbatt, J. P. D. Formation of volatile organic compounds in the heterogeneous oxidation of condensed-phase organic films by gas-phase OH. J. Phys. Chem. A 112, 1552–1560 (2008).

    Article  CAS  Google Scholar 

  39. Eliason, T. L., Gilman, J. B. & Vaida, V. Oxidation of organic films relevant to atmospheric aerosols. Atmos. Environ. 38, 1367–1378 (2004).

    Article  CAS  Google Scholar 

  40. McNeill, V. F., Wolfe, G. M. & Thornton, J. A. The oxidation of oleate in submicron aqueous salt aerosols: Evidence of a surface process. J. Phys. Chem. A 111, 1073–1083 (2007).

    Article  CAS  Google Scholar 

  41. Docherty, K. S. & Ziemann, P. J. Reaction of oleic acid particles with NO3 radicals: Products, mechanism, and implications for radical-initiated organic aerosol oxidation. J. Phys. Chem. A 110, 3567–3577 (2006).

    Article  CAS  Google Scholar 

  42. Gross, S. & Bertram, A. K. Reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of polycyclic aromatic hydrocarbon surfaces. J. Phys. Chem. A 112, 3104–3113 (2008).

    Article  CAS  Google Scholar 

  43. Russell, G. A. Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons — mechanism of the interaction of peroxy radicals. J. Am. Chem. Soc. 79, 3871–3877 (1957).

    Article  CAS  Google Scholar 

  44. Knopf, D. A., Mak, J., Gross, S. & Bertram, A. K. Does atmospheric processing of saturated hydrocarbon surfaces by NO3 lead to volatilization? Geophys. Res. Lett. 33, L17816 (2006).

    Article  Google Scholar 

  45. Renbaum, L. H. & Smith, G. D. Organic nitrate formation in the radical-initiated oxidation of model aerosol particles in the presence of NOx . Phys. Chem. Chem. Phys. 11, 8040–8047 (2009).

    Article  CAS  Google Scholar 

  46. Gross, S. & Bertram, A. K. Products and kinetics of the reactions of an alkane monolayer and a terminal alkene monolayer with NO3 radicals. J. Geophys. Res. 114, D02307 (2009).

    Article  Google Scholar 

  47. Kroll, J. H. et al. Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys. Chem. Chem. Phys. 11, 8005–8014 (2009).

    Article  CAS  Google Scholar 

  48. Abbatt, J. P. D. Heterogeneous interactions of BrO and ClO: Evidence for BrO surface recombination and reaction with HSO3/SO32−. Geophys. Res. Lett. 23, 1681–1684 (1996).

    Article  CAS  Google Scholar 

  49. Loukhovitskaya, E., Bedjanian, Y., Morozov, I. & Le Bras, G. Laboratory study of the interaction of HO2 radicals with the NaCl, NaBr, MgCl2 and sea salt surfaces. Phys. Chem. Chem. Phys. 11, 7896–7905 (2009).

    Article  CAS  Google Scholar 

  50. Oum, K. W., Lakin, M. J., DeHaan, D. O., Brauers, T. & Finlayson-Pitts, B. J. Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 279, 74–76 (1998).

    Article  CAS  Google Scholar 

  51. Knipping, E. M. et al. Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 288, 301–306 (2000).

    Article  CAS  Google Scholar 

  52. Finlayson-Pitts, B. J. The tropospheric chemistry of sea salt: A molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 103, 4801–4822 (2003).

    Article  CAS  Google Scholar 

  53. Roeselova, M., Jungwirth, P., Tobias, D. J. & Gerber, R. B. Impact, trapping, and accommodation of hydroxyl radical and ozone at aqueous salt aerosol surfaces. A molecular dynamics study. J. Phys. Chem. B 107, 12690–12699 (2003).

    Article  CAS  Google Scholar 

  54. Frinak, E. K. & Abbatt, J. P. D. Br2 production from the heterogeneous reaction of gas-phase OH with aqueous salt solutions: impacts of acidity, halide concentration, and organic surfactants. J. Phys. Chem. A 110, 10456–10464 (2006).

    Article  CAS  Google Scholar 

  55. Sjostedt, S. J. & Abbatt, J. P. D. Release of gas-phase halogens from sodium halide substrates: heterogeneous oxidation of frozen solutions and desiccated salts by hydroxyl radicals. Environ. Res. Lett. 3, 045007 (2008).

    Article  Google Scholar 

  56. Zafiriou, O. C. Sources and reactions of OH and daughter radicals in seawater. J. Geophys. Res. 79, 4491–4497 (1974).

    Article  CAS  Google Scholar 

  57. Rudich, Y., Talukdar, R. K., Ravishankara, A. R. & Fox, R. W. Reactive uptake of NO3 on pure water and ionic solutions. J. Geophys. Res. 101, 21023–21031 (1996).

    Article  CAS  Google Scholar 

  58. Jiang, P.-Y. et al. Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals. J. Chem. Soc. Faraday Trans. 88, 1653–1658 (1992).

    Article  CAS  Google Scholar 

  59. George, I. J., Slowik, J. & Abbatt, J. P. D. Chemical aging of ambient organic aerosol from heterogeneous reaction with hydroxyl radicals. Geophys. Res. Lett. 35, L13811 (2008).

    Article  Google Scholar 

  60. Sage, A. M., Weitkamp, E. A., Robinson, A. L. & Donahue, N. M. Evolving mass spectra of the oxidized component of organic aerosol: results from aerosol mass spectrometer analyses of aged diesel emissions. Atmos. Chem. Phys. 8, 1139–1152 (2008).

    Article  CAS  Google Scholar 

  61. Jimenez, J. L. et al. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529 (2009).

    Article  CAS  Google Scholar 

  62. George, I. J. & Abbatt, J. P. D. Chemical evolution of secondary organic aerosol from OH-initiated heterogeneous oxidation. Atmos. Chem. Phys. 10, 5551–5563, (2010).

    Article  CAS  Google Scholar 

  63. George, I. J. OH-initiated Heterogeneous Oxidation of Atmospheric Organic Aerosols PhD Thesis, Univ. Toronto (2009).

    Google Scholar 

  64. Aiken, A. C. et al. O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Tech. 42, 4478–4485 (2008).

    Article  CAS  Google Scholar 

  65. Petters, M. D. et al. Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys. Res. Lett. 33, L24806 (2006).

    Article  Google Scholar 

  66. Kwan, A. J. et al. On the flux of oxygenated volatile organic compounds from organic aerosol oxidation. Geophys. Res. Lett. 33, L15815 (2006).

    Article  Google Scholar 

  67. Lim, Y. B. & Ziemann, P. J. Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NO. Environ. Sci. Technol. 43, 2328–2334 (2009).

    Article  CAS  Google Scholar 

  68. George, I. J., Chang, R. Y.-W., Danov, V., Vlasenko, A. & Abbatt, J. P. D. Modification of cloud condensation nucleus activity of organic aerosols by hydroxyl radical heterogeneous oxidation. Atmos. Environ. 43, 5038–5045 (2009).

    Article  CAS  Google Scholar 

  69. Robinson, A. L., Donahue, N. M. & Rogge W. F. Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. J. Geophys. Res. 111, D03302 (2006).

    Google Scholar 

  70. Kanakidou, M. et al. Organic aerosol and global climate modelling: a review. Atmos. Chem. Phys. 5, 1053–1123 (2005).

    Article  CAS  Google Scholar 

  71. Prinn, R. G. et al. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292, 1882–1888 (2001).

    Article  CAS  Google Scholar 

  72. Heald, C. L. et al. A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 37, L08803 (2010).

    Google Scholar 

  73. Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J. & Rasmussen, R. A Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334, 138–141 (1988).

    Article  CAS  Google Scholar 

  74. Vogt, R., Crutzen, P. J. & Sander, R. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 383, 327–330 (1996).

    Article  CAS  Google Scholar 

  75. Adams, J. W., Holmes, N. S. & Crowley, J. N. Uptake and reaction of HOBr on frozen and dry NaCl/NaBr surfaces between 253 and 233K. Atmos. Chem. Phys. 2, 79–91 (2002).

    Article  CAS  Google Scholar 

  76. Matthew, B. M., George, I. & Anastasio, C. Hydroperoxyl radical (HO2) oxidizes dibromide radical anion (Br2) to bromine (Br2) in aqueous solution: Implications for the formation of Br2 in the marine boundary layer. Geophys. Res. Lett. 30, 2297 (2003).

    Article  Google Scholar 

  77. Laskin, A. et al. Reactions at interfaces as a source of sulfate formation in sea-salt particles. Science 301, 340–344 (2003).

    Article  CAS  Google Scholar 

  78. Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work in this field done by the authors has been largely supported by NSERC (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. D. Abbatt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, I., Abbatt, J. Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chem 2, 713–722 (2010). https://doi.org/10.1038/nchem.806

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.806

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing