Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecules containing rare-earth atoms solely bonded by transition metals

Abstract

Although metal–metal bonding is important in the chemistry of both solid-state intermetallic compounds and molecular species, the study of this bonding is limited by the compounds available and it is rarely possible to identify connections between these two areas. In this study, molecular intermetalloids [Ln(ReCp2)3] (Ln = Sm, Lu and La) have been synthesized that contain lanthanoid metals bound only to transition metals. Although they are highly reactive species, such lanthanoid-core transition-metal-shell compounds can be stable in solution. They mimic the bonding situation of intermetallic compounds, as revealed by a direct comparison of molecular and solid state lanthanoid–transition metal bonding.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and molecular structure of 1 (hydrogen atoms are omitted).
Figure 2: Synthesis and molecular structure of 4 (hydrogen atoms are omitted).
Figure 3: Electron localizability indicator (ELI-D) distributions.

References

  1. Pauling, L. The Nature of the Chemical Bond 3rd edn (VCH, 1973).

    Google Scholar 

  2. Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

    Article  CAS  Google Scholar 

  3. Wagner, F. R., Noor, A. & Kempe, R. Ultrashort metal–metal distances and extreme bond orders. Nature Chem. 1, 529–536 (2009).

    Article  CAS  Google Scholar 

  4. Nguyen, T. et al. Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 310, 844–847 (2005).

    Article  CAS  Google Scholar 

  5. Resa, I., Carmona, E., Gutierrez-Puebla, E. & Monge, A. Decamethyldizincocene, a stable compound of Zn(I) with a Zn–Zn Bond. Science 305, 1136–1138 (2004).

    Article  CAS  Google Scholar 

  6. Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

    Article  CAS  Google Scholar 

  7. Hill, M. S., Hitchcock, P. B. & Pongtavornpinyo, R. A linear homocatenated compound containing six indium centers. Science 311, 1904–1907 (2006).

    Article  CAS  Google Scholar 

  8. Casey, C. P., Jordan, R. F. & Rheingold, A. L. (C5H5)2Zr[Ru(CO)2C5H5]2. A metal–metal bonded zirconiumdiruthenium complex. Organometallics 3, 504–506 (1984).

    Article  CAS  Google Scholar 

  9. Gade, L. H. Highly polar metal-metal bonds in ‘early-late’ heterodimetallic complexes Angew. Chem. Int. Ed. 39, 2658–2678 (2000).

    Article  CAS  Google Scholar 

  10. Braunstein, P., Oro, L. A. & Raithby, P. R. Metal Clusters in Chemistry 1–3 (Wiley-VCH, 1999).

    Book  Google Scholar 

  11. Cadenbach, T. et al. Twelve one-electron ligands coordinating one metal center: structure and bonding of [Mo(ZnCH3)9(ZnCp*)3]. Angew. Chem. Int. Ed. 47, 9150–9154 (2008).

    Article  CAS  Google Scholar 

  12. Cadenbach, T., Gemel, Ch. & Fischer, R. A. Molecular cut-outs of Mo/Zn Hume–Rothery phases: synthesis and structure of [{Mo(CO)4}4(Zn)6(ZnCp*)4]. Angew. Chem. Int. Ed. 47, 9146–9149 (2008).

    Article  CAS  Google Scholar 

  13. Cadenbach, T. et al. Substituent-free gallium by hydrogenolysis of coordinated GaCp*: synthesis and structure of highly fluxional [Ru2(Ga)(GaCp*)7(H)3] Angew. Chem. Int. Ed. 48, 3872–3876 (2009).

    Article  CAS  Google Scholar 

  14. Cadenbach, T. et al. Molecular alloys, linking organometallics with intermetallic hume-rothery phases: the highly coordinated transition metal compounds [M(ZnR)n] (n ≥ 8) containing organo-zinc ligands. J. Am. Chem. Soc. 131, 16063–16077 (2009).

    Article  CAS  Google Scholar 

  15. Gade L. H. Mercury, structural element and source of localized reactivity in metal clusters. Angew. Chem. Int. Ed. 32, 21–40 (1993).

    Article  Google Scholar 

  16. Beletskaya, I. P. et al. Bimetallic lanthanide complexes with lanthanide-transition metal bonds. Molecular structure of (C4H8O)(C5H5)2LuRu(CO)2(C5H5). The use of 139La NMR spectroscopy. J. Am. Chem. Soc. 115, 3156–3166 (1993).

    Article  CAS  Google Scholar 

  17. Kempe, R., Noss, H. & Irrgang, T. Towards f and d electron interactions in amido metal complexes. J. Organomet. Chem. 647, 12–20, (2002).

    Article  CAS  Google Scholar 

  18. Liddle, S. T. Non-traditional ligands in f-block chemistry. Proc. R. Soc. A 465, 1673–1700 (2009).

    Article  CAS  Google Scholar 

  19. Liddle, S. T. & Mills, D. P. Metal–metal bonds in f-element chemistry. Dalton Trans. 5592–5605 (2009).

  20. Butovskii, M. V., Tok, O. L., Wagner, F. R. & Kempe, R. Bismetallocenes: lanthanoid transition metal bonds through alkane elimination. Angew. Chem. Int. Ed. 47, 6469–6472 (2008).

    Article  CAS  Google Scholar 

  21. Arnold, P. L., McMaster, J. & Liddle, S. T. An unsupported transition metal–lanthanide bond; synthesis and crystal structure of an Nd–Fe amido N-heterocyclic carbene complex. Chem. Commun. 818–820 (2009).

  22. Fidler, J., Suess, D. & Schrefl, T. in Handbook of Magnetism and Magnetic Materials, Vol. 4: Novel Materials 1945–1968 (Eds Kronmüller, H. & Parkin, S.) (John Wiley & Sons, 2007).

  23. Goll, D. & Kronmüller, H. High-performance permanent magnets. Naturwissenschaften 87, 423–438 (2000).

    Article  CAS  Google Scholar 

  24. David, E. An overview of advanced materials for hydrogen storage. J. Mat. Proc. Techn., 162–163, 169–177 (2005).

    Article  Google Scholar 

  25. Schumann, H., Freckmann, D. M. M. & Dechert, S. Organometallic compounds of the lanthanides 157; the molecular structure of tris(trimethylsilylmethyl)samarium, -erbium, -ytterbium, and –lutetium. Z. Anorg. Allg. Chem. 628, 2422–2426 (2002).

    Article  CAS  Google Scholar 

  26. Hitchcock, P. B., Lappert, M. F., Smith, R. G., Bartlett, R. A. & Power, P. P. Synthesis and structural characterisation of the first neutral homoleptic lanthanide metal(III) alkyls: [LnR3][Ln=La or Sm, R=CH(SiMe3)2]. J. Chem. Soc., Chem. Commun. 1007–1009 (1988).

  27. Emsley, J. The Elements 2nd edn (Clarendon Press, 1991).

    Google Scholar 

  28. Savitskii, E. M. & Khamidov, O. K. Crystal structure of compounds of rhenium with praseodymium. Inorg. Mater. (Engl. Transl.) 1, 1479–1480 (1965); Izv. Akad. Nauk SSSR, Neorg. Mater. (Russian) 1, 1621–1622 (1965).

    Google Scholar 

  29. Kuz'ma, Yu. B. & Svarichevskaya, S. I. Crystal structure of the compound Y2ReB6 and its analogs. Sov. Phys. Crystallogr. (Engl. Transl.) 17, 569–571 (1972); Kristallografiya (Russian) 17, 658–661 (1972).

    Google Scholar 

  30. Kohout, M. Bonding indicators from electron pair density functionals. Faraday Discuss. 135, 43–54 (2007).

    Article  CAS  Google Scholar 

  31. Wagner, F. R., Bezugly, V., Kohout, M. & Grin, Y. Charge decomposition analysis of the electron localizability indicator: a bridge between the orbital and direct space representation of the chemical bond. Chem. Eur. J. 13, 5724–5741 (2007).

    Article  CAS  Google Scholar 

  32. Jansen, G. et al. Unsupported Ti-Co and Zr-Co Bonds in heterobimetallic complexes: a theoretical description of metal-metal bond polarity J. Am. Chem. Soc. 120, 7239–7251 (1998).

    Article  CAS  Google Scholar 

  33. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1994).

    Google Scholar 

  34. Raub, S. & Jansen, G. A quantitative measure of bond polarity from the electron localization function and the theory of atoms in molecules. Theor. Chem. Acc. 106, 223–232 (2001).

    Article  CAS  Google Scholar 

  35. Bickelhaupt, F. M. & Baerends, E. J. Kohn-Sham density functional theory: predicting and understanding chemistry. Rev. Comput. Chem. 15, 1–86 (2000).

    CAS  Google Scholar 

  36. Gardner, B. M., McMaster, J., Lewis, W. & Liddle, S. T. Synthesis and structure of [{N(CH2CH2NSiMe3)3}UReCp2]: a heterobimetallic complex with an unsuppported uranium-rhenium bond. Chem. Commun. 2852–2853 (2009).

  37. Kohout, M., Wagner, F. R. & Grin, Yu. Electron localization function for transition-metal compounds. Theor. Chem. Acc. 108, 150–156 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, SPP 1166 ‘Lanthanoid-spezifische Funktionalitäten in Molekül und Material’ for financial support. We acknowledge U. Schwarz and W. Schnelle for IR and magnetization measurements, respectively.

Author information

Authors and Affiliations

Authors

Contributions

M.V.B. carried out the synthesis experiments and analysed the NMR spectroscopic data. C.D. performed the X-ray single crystal structure analyses. V.B. carried out the computations of the organometallic molecule. F.R.W. and Y.G. performed the analysis of structural analogies and chemical bonding. R.K. originated the central idea and wrote the manuscript with contributions from all the co-authors.

Corresponding authors

Correspondence to Frank R. Wagner, Yuri Grin or Rhett Kempe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1989 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 23 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 22 kb)

Supplementary information

Crystallographic data for compound 3 (CIF 24 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butovskii, M., Döring, C., Bezugly, V. et al. Molecules containing rare-earth atoms solely bonded by transition metals. Nature Chem 2, 741–744 (2010). https://doi.org/10.1038/nchem.718

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing