Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of steps in surface catalysis and reaction oscillations

Abstract

Atomic steps at the surface of a catalyst play an important role in heterogeneous catalysis, for example as special sites with increased catalytic activity. Exposure to reactants can cause entirely new structures to form at the catalyst surface, and these may dramatically influence the reaction by ‘poisoning’ it or by acting as the catalytically active phase. For example, thin metal oxide films have been identified as highly active structures that form spontaneously on metal surfaces during the catalytic oxidation of carbon monoxide. Here, we present operando X-ray diffraction experiments on a palladium surface during this reaction. They reveal that a high density of steps strongly alters the stability of the thin, catalytically active palladium oxide film. We show that stabilization of the metal, caused by the steps and consequent destabilization of the oxide, is at the heart of the well-known reaction rate oscillations exhibited during CO oxidation at atmospheric pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spontaneous oscillations in the CO oxidation rate on Pd(001) as measured by SXRD and mass spectrometry.
Figure 2: Stability diagram of the Pd(001) surface measured with SXRD.
Figure 3: Generic model for the reaction rate oscillations.

Similar content being viewed by others

References

  1. Taylor, H. S. A theory of the catalytic surface. Proc. R. Soc. Lond. A 108, 105–111 (1925).

    Article  CAS  Google Scholar 

  2. Yates, J. T. Surface chemistry at metallic defect sites. J. Vac. Sci. Technol. A 13, 1359–1367 (1995).

    Article  CAS  Google Scholar 

  3. Hammer, B., Nielsen, O. H. & Nørskov, J. K. Structure sensitivity in adsorption: CO interaction with stepped and reconstructed Pt surfaces. Catal. Lett. 46, 31–35 (1997).

    Article  CAS  Google Scholar 

  4. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley, 1994).

    Google Scholar 

  5. Zambelli, T., Wintterlin, J., Trost, J. & Ertl, G. Identification of the ‘active sites’ of a surface-catalyzed reaction. Science 273, 1688–1690 (1996).

    Article  CAS  Google Scholar 

  6. Dahl, S. et al. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814–1817 (1999).

    Article  Google Scholar 

  7. Geerlings, J. J. C. et al. Fischer–Tropsch technology—from active site to commercial process. Appl. Catal. A 186, 27–40 (1999).

    Article  CAS  Google Scholar 

  8. Vang, R. T. et al. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nature Mater. 4, 160–162 (2005).

    Article  CAS  Google Scholar 

  9. Over, H. et al. Atomic scale structure and catalytic reactivity of the RuO2(110) surface. Science 287, 1474–1476 (2000).

    Article  CAS  Google Scholar 

  10. Hendriksen, B. L. M. & Frenken, J. W. M. CO oxidation on Pt(110): scanning tunneling microscopy inside a flow reactor. Phys. Rev. Lett. 89, 046101 (2002).

    Article  CAS  Google Scholar 

  11. Ackermann, M. D. et al. Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505 (2005).

    Article  CAS  Google Scholar 

  12. Lundgren, E. et al. Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures. Phys. Rev. Lett. 92, 046101 (2004).

    Article  CAS  Google Scholar 

  13. Reuter, K. & Scheffler, M. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90, 046103 (2003).

    Article  Google Scholar 

  14. Gao, F., Wang, Y., Cai, Y. & Goodman D. W. CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J. Phys. Chem. C 113, 174–181 (2009).

    Article  CAS  Google Scholar 

  15. Rogal, J., Reuter, K. & Scheffler, M. CO oxidation at Pd(100): a first-principles constrained thermodynamics study. Phys. Rev. B 75, 205433 (2007).

    Article  Google Scholar 

  16. Mars, P. & Van Krevelen, D. W. Oxidation carried out by means of vanadium oxide catalysts. Spec. Suppl. Chem. Eng. Sci. 3, 41–57 (1954).

    Article  CAS  Google Scholar 

  17. Hendriksen, B. L. M., Bobaru, S. C. & Frenken, J. W. M. Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf. Sci. 552, 229–242 (2004).

    Article  CAS  Google Scholar 

  18. Hendriksen, B. L. M., Bobaru, S. C. & Frenken, J. W. M. Bistability and oscillations in CO oxidation studied with scanning tunneling microscopy inside a reactor. Catal. Today 105, 234–243 (2005).

    Article  CAS  Google Scholar 

  19. Imbihl, R. & Ertl, G. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995).

    Article  CAS  Google Scholar 

  20. Schüth, F., Henry, B. E. & Schmidt, L. D. Oscillatory reactions in heterogeneous catalysis. Adv. Catal. 39, 51–127 (1993).

    Google Scholar 

  21. Robinson, I. K. Crystal truncation rods and surface roughness. Phys. Rev. B 33, 3830–3836 (1986).

    Article  CAS  Google Scholar 

  22. Stierle, A. et al. A surface X-ray study of the structure and morphology of the oxidized Pd(001) surface. J. Chem. Phys. 122, 044706 (2005).

    Article  CAS  Google Scholar 

  23. Wagner, C. The formation of thin oxide films on metals. Corrosion Sci. 13, 23–52 (1973).

    Article  CAS  Google Scholar 

  24. Klikovits, J. et al. Step-orientation-dependent oxidation: from 1D to 2D oxides. Phys. Rev. Lett. 101, 266104 (2008).

    Article  CAS  Google Scholar 

  25. Thostrup, P. et al. Adsorption-induced step formation. Phys. Rev. Lett. 87, 126102 (2001).

    Article  CAS  Google Scholar 

  26. Zhang, Y., Rogal, J. & Reuter, K. Density-functional theory investigation of oxygen adsorption at Pd(11N) vicinal surfaces (N=3,5,7): influence of neighboring steps. Phys. Rev. B 74, 125414 (2006).

    Article  Google Scholar 

  27. Williams, E. D. & Bartelt, N. C. Thermodynamics of surface morphology. Science 251, 393–400 (1991).

    Article  CAS  Google Scholar 

  28. Sales, B. C., Turner, J. E. & Maple, M. B. Oscillatory oxidation of CO over Pt, Pd and Ir catalysts: theory. Surf. Sci. 114, 381–394 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge E. Lundgren for providing a palladium crystal and the ESRF staff for support. This work has been financially supported by the Stichting Technische Wetenschappen (STW), the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) and the European Commission under contract no. NMP3-CT-2003-505670 (NANO2).

Author information

Authors and Affiliations

Authors

Contributions

B.L.M.H. and J.W.M.F. conceived the new explanation for the oscillatory reaction and B.L.M.H. developed the corresponding numerical model. M.D.A. and I.P. performed the batch experiments. R.v.R., D.S., O.B., A.R. and D.W. performed the flow experiments. M.D.A., R.v.R. and B.L.M.H. analysed the data. R.F. and S.F. supervised the experiments and J.W.M.F. supervised the project. B.L.M.H., M.D.A., R.v.R. and J.W.M.F. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Joost W. M. Frenken.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1052 kb)

Supplementary information

Supplementary movie S1 (MOV 3259 kb)

Supplementary information

Supplementary movie S2 (MOV 2370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendriksen, B., Ackermann, M., van Rijn, R. et al. The role of steps in surface catalysis and reaction oscillations. Nature Chem 2, 730–734 (2010). https://doi.org/10.1038/nchem.728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing