Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoreactivity examined through incorporation in metal−organic frameworks

Abstract

Metal−organic frameworks, typically built by bridging metal centres with organic linkers, have recently shown great promise for a wide variety of applications, including gas separation and drug delivery. Here, we have used them as a scaffold to probe the photophysical and photochemical properties of metal−diimine complexes. We have immobilized a M(diimine)(CO)3X moiety (where M is Re or Mn, and X can be Cl or Br) by using it as the linker of a metal−organic framework, with Mn(II) cations acting as nodes. Time-resolved infrared measurements showed that the initial excited state formed on ultraviolet irradiation of the rhenium-based metal−organic framework was characteristic of an intra-ligand state, rather than the metal−ligand charge transfer state typically observed in solution, and revealed that the metal−diimine complexes rearranged from the fac- to mer-isomer in the crystalline solid state. This approach also enabled characterization of the photoactivity of Mn(diimine)(CO)3Br by single-crystal X-ray diffraction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Views of the single-crystal X-ray structure of 1, with compound 2 adopting an isostructural arrangement.
Figure 2: Fast TRIR spectra obtained following irradiation of a KBr disc of {Mn(DMF)2[C12H6N2O4Re(CO)3Cl]} (1).
Figure 3: Characterization of photochemical conversion from fac- to mer-isomers by IR spectroscopy.
Figure 4: ATR-FTIR spectrum (bottom) of {Mn(DMF)2[C12H6N2O4Mn(CO)3Cl]} (2) and difference FTIR spectra (top).
Figure 5: Views of the single-crystal X-ray structure of the Mn(diimine)(CO)3Cl moiety in 2a and 2b, illustrating fac–mer isomerization.

Similar content being viewed by others

References

  1. Lin, X. et al. A porous framework polymer based on a zinc(II) 4,4′-bipyridine-2,6,2′,6′-tetracarboxylate: synthesis, structure and ‘zeolite-like’ behaviors. J. Am. Chem. Soc. 128, 10745–10753 (2006).

    Article  CAS  Google Scholar 

  2. Lin, X. et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization and exposed metal sites. J. Am. Chem. Soc. 131, 2159–2171 (2009).

    Article  CAS  Google Scholar 

  3. Shultz, A. M., Farha, O. K., Hupp, J. T. & Nguyen, S. T. A catalytically active, permanently microporous MOF with metalloporphyrin struts. J. Am. Chem. Soc. 131, 4204–4205 (2009).

    Article  CAS  Google Scholar 

  4. Hwang, Y. K. et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Ed. 47, 4144–4148 (2008).

    Article  CAS  Google Scholar 

  5. Lan, A. et al. A luminescent microporous metal−organic framework for the fast and reversible detection of high explosives. Angew. Chem. Int. Ed. 48, 2334–2338 (2009).

    Article  CAS  Google Scholar 

  6. Chen, B. et al. A luminescent metal−organic framework with Lewis basic pyridyl sites for the sensing of metal ions. Angew. Chem. Int. Ed. 48, 500–503 (2009).

    Article  CAS  Google Scholar 

  7. Chandler, B. D., Yu, J. O., Cramb, D. T. & Shimizu, G. K. H. Series of lanthanide–alkali metal−organic frameworks exhibiting luminescence and permanent microporosity. Chem. Mater. 19, 4467–4473 (2007).

    Article  CAS  Google Scholar 

  8. Ouellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. A thermally and hydrolytically stable microporous framework exhibiting single-chain magnetism: structure and properties of [Co2(H0.67bdt)3]·20H2O. Angew. Chem. Int. Ed. 48, 2140–2143 (2009).

    Article  CAS  Google Scholar 

  9. Zhang, X.-M., Hao, Z.-M., Zhang, W.-X. & Chen, X.-M. Dehydration-induced conversion from a single-chain magnet into a metamagnet in a homometallic nanoporous metal−organic framework. Angew. Chem. Int. Ed. 46, 3456–3459 (2007).

    Article  CAS  Google Scholar 

  10. Horcajada, P. et al. Flexible porous metal−organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    Article  CAS  Google Scholar 

  11. Champness, N. R. Coordination frameworks—where next? J. Chem. Soc., Dalton Trans. 877–880 (2006).

  12. Hoskins, B. F. & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2 . J. Am. Chem. Soc. 112, 1546–1554 (1990).

    Article  CAS  Google Scholar 

  13. Kawamichi, T., Haneda, T., Kawano, M. & Fujita, M. X-ray observation of a transient hemiaminal trapped in a porous network. Nature 461, 633–635 (2009).

    Article  CAS  Google Scholar 

  14. Kaye, S. S. & Long, J. R. Matrix isolation chemistry in a porous metal−organic framework: photochemical substitutions of N2 and H2 in Zn4O[(η6-1,4-benzenedicarboxylate)Cr(CO)3]3 . J. Am. Chem. Soc. 130, 806–807 (2008).

    Article  CAS  Google Scholar 

  15. Cho, S.-H., Ma, B., Nguyen, S. B., Hupp, J. T. & Albrecht-Schmitt, T. E. A metal−organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun. 2563–2565 (2006).

  16. Chen, B. et al. Surface interactions and quantum kinetic melocular sieving for H2 and D2 adsorption on a mixed metal−organic framework material. J. Am. Chem. Soc. 130, 6411–6426 (2008).

    Article  CAS  Google Scholar 

  17. Xie, Z., Ma., L., deKrafft, K. E., Jin, A. & Lin, W. Porous phosphorescent coordination polymers for oxygen sensing. J. Am. Chem. Soc. 132, 922–923 (2010).

    Article  CAS  Google Scholar 

  18. Butler, J. M., George, M. W., Schoonover, J. R., Dattelbaum, D. M. & Meyer, T. J. Application of transient infrared and near infrared spectroscopy to transition metal complex excited states and intermediates. Coord. Chem. Rev. 251, 492–514 (2007).

    Article  CAS  Google Scholar 

  19. Metcalfe, C. & Thomas, J. A. Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev. 32, 214–224 (2003).

    Article  Google Scholar 

  20. Coleman, A., Brennan, C., Vos, J. G. & Pryce, M. T. Photophysical properties and applications of Re(I) and Re(I)–Ru(II) carbonyl polypyridyl complexes Coord. Chem. Rev. 2585–2595 (2008).

  21. Chen, C. et al. Rhenium(I) tricarbonyl complexes with bispyridine ligands attached to sulfur-rich core: syntheses, structures and properties. J. Organomet. Chem. 694, 763–770 (2009).

    Article  CAS  Google Scholar 

  22. Hasselmann, G. M. & Meyer, G. J. Diffusion-limited interfacial electron transfer with large apparent driving forces. J. Phys. Chem. B 103, 7671–7675 (1999).

    Article  CAS  Google Scholar 

  23. Kirgan, R. A., Sullivan, B. P. & Rillema, D. P. Photochemistry and photophysics of coordination compounds: rhenium. Top. Curr. Chem. 281, 45–100 (2007).

    Article  CAS  Google Scholar 

  24. Si, Z., Li, J., Li, B., Zhao, F., Liu, S. & Li, W. Synthesis, structural characterization and electrophosphorescent properties of rhenium(I) complexes containing carrier-transporting groups. Inorg. Chem. 46, 6155–6163 (2007).

    Article  CAS  Google Scholar 

  25. Warren, M. R. et al. Reversible 100% linkage isomerization in a single-crystal to single-crystal transformation: photocrystallographic identification of the metastable [Ni(dppe)(η1-ONO)Cl] isomer. Angew. Chem. Int. Ed. 48, 5711–5714 (2009).

    Article  CAS  Google Scholar 

  26. Easun, T. L. et al. Luminescence and time-resolved infrared study of dyads containing (diimine)Ru(4,4′-diethylamido-2,2′-bipyridine)2 and (diimine)Ru(CN)4 moieties: solvent-induced reversal of the direction of photoinduced energy-transfer. Inorg. Chem. 48, 8759–8770 (2009).

    Article  CAS  Google Scholar 

  27. Lazarides, T. et al. Structural and photophysical properties of adducts of [Ru(bipy)(CN)4]2− with different metal cations: metallochromism and its use in switching photoinduced energy transfer. J. Am. Chem. Soc. 129, 4014–4027 (2007).

    Article  CAS  Google Scholar 

  28. Ward, M. D. [Ru(bipy)(CN)4]2− and its derivatives: photophysical properties and its use in photoactive supramolecular assemblies. Coord. Chem. Rev. 250, 3128–3141 (2006).

    Article  CAS  Google Scholar 

  29. Adams, H. et al. New members of the [Ru(diimine)(CN)4]2 family: structural, electrochemical and photophysical properties. J. Chem. Soc., Dalton Trans. 39–50 (2006).

  30. Clark, I. P., George, M. W., Johnson, F. P. A. & Turner, J. J. Infrared rigidochromism: a new effect in the IR spectra of the excited states of coordination compounds. Chem. Commun. 1587–1588 (1996).

  31. Dattelbaum, D. M. & Meyer, T. J. Metal-to-ligand charge transfer excited-state ν(CO) shifts in rigid media. J. Phys. Chem. A 106, 4519–4524 (2002).

    Article  CAS  Google Scholar 

  32. Chen, P. J. & Meyer, T. J. Medium effects on charge transfer in metal complexes. Chem. Rev. 98, 1439–1478 (1998).

    Article  CAS  Google Scholar 

  33. Chen, P. & Meyer, T. J. Electron transfer in frozen media. Inorg. Chem. 35, 5520–5524 (1996).

    Article  CAS  Google Scholar 

  34. Constable, E. C. Expanded ligands—an assembly principle for supramolecular chemistry. Coord. Chem. Rev. 252, 842–855 (2008).

    Article  CAS  Google Scholar 

  35. Ronson, T. K. et al. Luminescent PtII(bipyridyl)(diacetylide) chromophores with pendant binding sites as energy donors for sensitised near-infrared emission from lanthanides: structures and photophysics of PtII/LnIII assemblies. Chem. Eur. J. 12, 9299–9313 (2006).

    Article  CAS  Google Scholar 

  36. Szeto, K. C., Kongshaug, K. O., Jakobsen, S., Tilset, M. & Lillerud, K. P. Design, synthesis and characterization of a Pt–Gd metal–organic framework containing potentially catalytically active sites. J. Chem. Soc., Dalton Trans. 2054–2060 (2008).

  37. Dincă, M. & Long, J. R. Hydrogen storage in microporous metal−organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. 47, 6766–6779 (2008).

    Article  Google Scholar 

  38. O'Keeffe, M., Peskov, M., Ramsden, S. J. A. & Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 30, 1782–1789 (2008).

    Article  Google Scholar 

  39. Schanze, S. K., MacQueen, D. B., Perkins, T. A. & Cabana, L. A. Studies of intramolecular electron and energy transfer using the fac-(diimine)ReI(CO)3 chromophore. Coord. Chem. Rev. 122, 63–89 (1993).

    Article  CAS  Google Scholar 

  40. Worl, L. A., Duesing, R., Chen, P., Della Ciana, L. & Meyer, T. J. Photophysical properties of polypyridyl carbonyl complexes of rhenium(I). J. Chem. Soc., Dalton Trans. 849–858 (1991).

  41. Sacksteder, L., Lee, M., Demas, J. N. & DeGraff, B. A. Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions. J. Am. Chem. Soc. 115, 8230–8238 (1993).

    Article  CAS  Google Scholar 

  42. Towrie, M. et al. A time-resolved infrared vibrational spectroscopic study of the photo-dynamics of crystalline materials. Applied Spectroscopy 63, 57–65 (2009).

    Article  CAS  Google Scholar 

  43. Costa, I., Montalti, M., Pallavicini, P., Perotti, A., Prodi, L. & Zaccheroni, N. Absorption and luminescence as a function of pH for carboxylic acid-functionalized ReI tricarbonyls. J. Organomet. Chem. 593−594, 267–273 (2000).

    Article  Google Scholar 

  44. Sato, S., Morimoto, T. & Ishitani, O. Photochemical synthesis of mer-[Re(bpy)(CO)3Cl]. Inorg. Chem. 46, 9051–9053 (2007).

    Article  CAS  Google Scholar 

  45. Kleverlaan, C. J., Hartl, F. & Stufkens, D. J. Mechanistic aspects of the thermal mer- to fac- isomerisation of mer-[Mn(X)(CO)3(α-diimine)] (X=Cl, Br, I). J. Organomet. Chem. 561, 57–65 (1998).

    Article  CAS  Google Scholar 

  46. Nelissen, H. F. M., Feiters, M. C. & Nolte, R. J. M. Synthesis and self-inclusion of bipyridine-spaced cyclodextrin dimers. J. Org. Chem. 67, 5901–5906 (2002).

    Article  CAS  Google Scholar 

  47. Abel, E. W. & Wilkinson, G. Carbonyl halides of manganese and some related compounds. J. Chem. Soc. 1501–1505 (1959).

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Engineering and Physical Sciences Research Council (EP/D058147/1) for funding. We are grateful to the Science and Technology Facilities Council (STFC) for access to the Diamond light source for single-crystal structure analysis. M.W.G. gratefully acknowledges receipt of a Royal Society Wolfson Merit Award. We also thank S. Argent for useful discussions and D. Blackmore for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B., D.R.A. and H.N. carried out the X-ray structural data analysis, X.Z.S. the photophysical measurements, T.L.E. the photophysical measurements, syntheses and characterization and J.J. the syntheses, characterization and X-ray structural data analysis. N.R.C. and M.W.G. designed, directed and supervised the overall project. All authors co-wrote the paper.

Corresponding authors

Correspondence to Neil R. Champness or Michael W. George.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 607 kb)

Supplementary information

Crystallographic information for the metal−organic framework (ReMn), 1 (CIF 12 kb)

Supplementary information

Crystallographic information for the metal−organic framework MnMn), fac-isomer, 2a (CIF 17 kb)

Supplementary information

Crystallographic information for the metal−organic framework MnMn), mer-isomer, 2b (CIF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, A., Champness, N., Easun, T. et al. Photoreactivity examined through incorporation in metal−organic frameworks. Nature Chem 2, 688–694 (2010). https://doi.org/10.1038/nchem.681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing