Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental evidence for the functional relevance of anion–π interactions

Abstract

Attractive in theory and confirmed to exist, anion–π interactions have never really been seen at work. To catch them in action, we prepared a collection of monomeric, cyclic and rod-shaped naphthalenediimide transporters. Their ability to exert anion–π interactions was demonstrated by electrospray tandem mass spectrometry in combination with theoretical calculations. To relate this structural evidence to transport activity in bilayer membranes, affinity and selectivity sequences were recorded. π-acidification and active-site decrowding increased binding, transport and chloride > bromide > iodide selectivity, and supramolecular organization inverted acetate > nitrate to nitrate > acetate selectivity. We conclude that anion–π interactions on monomeric surfaces are ideal for chloride recognition, whereas their supramolecular enhancement by π,π-interactions appears perfect to target nitrate. Chloride transporters are relevant to treat channelopathies, and nitrate sensors to monitor cellular signaling and cardiovascular diseases. A big impact on organocatalysis can be expected from the stabilization of anionic transition states on chiral π-acidic surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and hypothesized active suprastructures of anion–π transporters.
Figure 2: Synthesis of dicyano NDIs.
Figure 3: Laser-induced ESI-MS-MS fragmentation of heterodimer complexes and charge-transfer absorption.
Figure 4: Molecular modelling of anion–π interactions.
Figure 5: Transport selectivity.

Similar content being viewed by others

References

  1. Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008).

    Article  CAS  Google Scholar 

  2. Gamez, P., Mooibroek, T. J., Teat, J. S. & Reedijk, J. Anion binding involving π-acidic heteroaromatic rings. Acc. Chem. Res. 40, 435–444 (2007).

    Article  CAS  Google Scholar 

  3. Quinonero, D. et al. Anion-π interactions: Do they exist? Angew. Chem. Int. Ed. 41, 3389–3392 (2002).

    Article  CAS  Google Scholar 

  4. Mascal, M., Armstrong, A. & Bartberger, M. D. Anion-aromatic bonding: A case for anion recognition by π-acidic rings. J. Am. Chem. Soc. 124, 6274–6276 (2002).

    Article  CAS  Google Scholar 

  5. Alkorta, I., Rozas, I. & Elguero, J. Interaction of anions with perfluoro aromatic compounds. J. Am. Chem. Soc. 124, 8593–8598 (2002).

    Article  CAS  Google Scholar 

  6. Rosokha, Y. S., Lindeman, S. V., Rosokha, S. V. & Kochi, J. K. Halide recognition through diagnostic anion-π interactions: Molecular complexes of Cl, Br, and I with olefinic and aromatic receptors. Angew. Chem. Int. Ed. 43, 4650–4652 (2004).

    Article  CAS  Google Scholar 

  7. Gil-Ramírez, G., Escudero-Adán, E. C., Benet-Buchholz, J. & Ballester, P. Quantitative evaluation of anion-π interactions in solution. Angew. Chem. Int. Ed. 47, 4114–4118 (2008).

    Article  Google Scholar 

  8. Zaccheddu, M., Filippi, C. & Buda, F. Anion-π and π-π cooperative interactions regulating the self-assembly of nitrate-triazine-triazine complexes. J. Phys. Chem. A 112, 1627–1632 (2008).

    Article  CAS  Google Scholar 

  9. Berryman, O. B., Bryantsev, V. S., Stay, D. P., Johnson, D. W. & Hay, B. P. Structural criteria for the design of anion receptors: The interaction of halides with electron-deficient arenes. J. Am. Chem. Soc. 129, 48–58 (2007).

    Article  CAS  Google Scholar 

  10. Hay, B. P. & Bryantsev, V. S. Anion-arene adducts: C-H hydrogen bonding, anion-π interaction, and carbon bonding motifs. Chem. Commun. 2417–2428 (2008).

  11. Hay, B. P. & Custelcean, R. Anion-π interactions in crystal structures: Commonplace or extraordinary? Cryst. Growth Design 9, 2539–2545 (2009).

    Article  CAS  Google Scholar 

  12. Ma, J. C. & Dougherty, D. A. The cation-π interaction. Chem. Rev. 97, 1303–1324 (1997).

    Article  CAS  Google Scholar 

  13. Mareda, J. & Matile, S. Anion-π slides for transmembrane transport. Chem. Eur. J. 15, 28–37 (2009).

    Article  CAS  Google Scholar 

  14. Gorteau, V., Bollot, G., Mareda, J. & Matile, S. Rigid-rod anion-π slides for multiion hopping across lipid bilayers. Org. Biomol. Chem. 5, 3000–3012 (2007).

    Article  CAS  Google Scholar 

  15. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    Article  CAS  Google Scholar 

  16. Gokel, G. W. & Barkey, N. Transport of chloride ion through phospholipid bilayers mediated by synthetic ionophores. New J. Chem. 33, 947–963 (2009).

    Article  CAS  Google Scholar 

  17. Li, X., Shen, B., Yao, X. Q. & Yang, D. Synthetic chloride channel regulates cell membrane potentials and voltage-gated calcium channels. J. Am. Chem. Soc. 131, 13676–13680 (2009).

    Article  CAS  Google Scholar 

  18. Deng, G., Dewa, T. & Regen, S. L. A synthetic ionophore that recognizes negatively charged phospholipid membranes. J. Am. Chem. Soc. 118, 8975–8976 (1996).

    Article  CAS  Google Scholar 

  19. Davis, J. T. et al. Using “small” molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes. Nature Chem. 1, 138–144 (2009).

    Article  CAS  Google Scholar 

  20. Hennig, A., Fischer, L., Guichard, G. & Matile, S. Anion-macrodipole interactions: self-assembling, macrocyclic oligourea/amide anion transporters that respond to membrane polarization. J. Am. Chem. Soc. 131, 16889–16895 (2009).

    Article  CAS  Google Scholar 

  21. Bhosale, S. V., Jani, C. H. & Langford, S. J. Chemistry of naphthalene diimides. Chem. Soc. Rev. 37, 331–342 (2008).

    Article  CAS  Google Scholar 

  22. Jones, R. A., Facchetti, A., Wasielewski, M. R. & Marks, T. J. Tuning orbital energetics in arylene diimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007).

    Article  CAS  Google Scholar 

  23. Bhosale, S. et al. Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers. Science 313, 84–86 (2006).

    Article  CAS  Google Scholar 

  24. Gabutti, S. et al. A rigid sublimable naphthalenediimide cyclophane as model compound for UHV STM experiments. Chem. Commun. 2370–2372 (2008).

  25. Könemann, M. Naphthalenetetracarboxylic acid derivatives and their use as semiconductors. WO/2007/074137.

  26. Matile, S. & Sakai, N. in Analytical Methods in Supramolecular Chemistry (ed. Schalley, C. A.) 391–418 (Wiley, 2007).

    Google Scholar 

  27. Kogej, M. & Schalley, C. A. in Analytical Methods in Supramolecular Chemistry (ed. Schalley, C. A.) 104–162 (Wiley, 2007).

    Google Scholar 

  28. Cooks, R. G., Patrick, J. S., Kotiaho, T. & McLuckey, S. A. Thermochemical determinations by the kinetic method. Mass Spectrom. Rev. 13, 287–339 (1994).

    Article  CAS  Google Scholar 

  29. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  30. Ernzerhof, M. & Scuseria, G. E. Assessment of the Perdew-Burke-Ernzenhof exchange-correlation functional. J. Chem. Phys. 110, 5029–5036 (1999).

    Article  CAS  Google Scholar 

  31. Frisch, M. J. et al. Gaussian 03, Revision C.02 (Gaussian, 2004).

    Google Scholar 

  32. McNally, B. A., Koulov, A. V., Smith, B. D., Joos, J-B. & Davis, A. P. A fluorescent assay for chloride transport; identification of a synthetic anionophore with improved activity. Chem. Commun. 1087–1089 (2005).

  33. Butler, A. R. & Feelisch, M. Therapeutic uses of inorganic nitrite and nitrate - from the past to the future. Circulation 117, 2151–2159 (2008).

    Article  CAS  Google Scholar 

  34. Kishore, R. S. K. et al. Ordered and oriented supramolecular n/p-heterojunction surface architectures: Completion of the primary color collection. J. Am. Chem. Soc. 131, 11106–11116 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.-H. Tran, J. Praz and L. Maffiolo for contributions to synthesis, D. Jeannerat, A. Pinto and S. Grass for NMR measurements, P. Perrottet, N. Oudry and G. Hopfgartner for mass spectrometry, the Swiss National Supercomputing Center in Manno for CPU time, and the University of Geneva (S.M., J.M.), the University of Basel (M.M.), the Deutsche Forschungsgemeinschaft (C.A.S.), the Fonds der Chemischen Industrie (C.A.S.), the NCCR Nanoscale Sciences of the SNF (S.G., M.M.) and the Swiss NSF (S.M., M.M.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.E.D., V.R., J.M., T.T., S.G. and A.H. synthesized compounds, A.H. and R.E.D. transported ions across membranes, D.P.W. performed the (tandem) mass spectrometric experiments and evaluated the mass spectrometry data, D.E. prepared computational models, M.M., J.M., C.A.S. and S.M. directed the study, contributing to design, execution and interpretation of experiments, computer modelling and manuscript writing.

Corresponding author

Correspondence to Stefan Matile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2050 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, R., Hennig, A., Weimann, D. et al. Experimental evidence for the functional relevance of anion–π interactions. Nature Chem 2, 533–538 (2010). https://doi.org/10.1038/nchem.657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing