Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ion-triggered spring-like motion of a double helicate accompanied by anisotropic twisting

Abstract

Molecules that extend and contract under external stimuli are used to build molecular machines with nanomechanical functions. But although common in biological systems, such extension and contraction motions with helical molecules have rarely been accompanied by unidirectional twisting in synthetic systems. Here we show that sodium ions can trigger the reversible anisotropic twisting of an enantiomeric double-stranded helicate, without racemization. An optically active helicate consisting of two tetraphenol strands bridged by two spiroborate groups sandwiches a sodium ion. On removal of the central sodium—through addition of a cryptand [2.2.1] in solution—the double helicate extends. Crystallographic and nuclear magnetic resonance studies reveal that the extended helicate is over twice as long as the initial molecule, and is twisted in the right-handed direction. Circular dichroism analysis suggests that the twisting doesn't affect the helicate's handedness. This anisotropic extension–contraction process is reversibly triggered by the successive addition and removal of sodium ions in solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and optical resolution.
Figure 2: Capped-stick representations of the crystal structures of the trinuclear boron helicates.
Figure 3: Synthesis and characterization of the dinuclear helicate.
Figure 4: Anisotropic twisting motion of the helicate.

Similar content being viewed by others

References

  1. Urry, D. W. Molecular machines: How motion and other functions of living organisms stem from reversible chemical changes. Angew. Chem. Int. Ed. Engl. 32, 819–841 (1993).

    Article  Google Scholar 

  2. Fyfe, M. C. T. & Stoddart, J. F. Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997).

    Article  CAS  Google Scholar 

  3. Collin, J.-P., Dietrich-Buchecker, C., Gavina, P., Jimenez-Molero, M. C. & Sauvage, J.-P. Shuttles and muscles: Linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    Article  CAS  Google Scholar 

  4. Kinbara, K. & Aida, T. Toward intelligent molecular machines: Directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  CAS  Google Scholar 

  5. Jousselme, B. et al. Crown-annelated oligothiophenes as model compounds for molecular actuation. J. Am. Chem. Soc. 125, 1363–1370 (2003).

    Article  CAS  Google Scholar 

  6. Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards synthetic molecular muscles: Contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  Google Scholar 

  7. Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    Article  CAS  Google Scholar 

  8. Fang, L. et al. Acid-base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009).

    Article  CAS  Google Scholar 

  9. Bell, T. W. & Jousselin, H. Self-assembly of a double-helical complex of sodium. Nature 367, 441–444 (1994).

    Article  CAS  Google Scholar 

  10. Jung, O.-S., Kim, Y. J., Lee, Y.-A., Park, J. K. & Chae, H. K. Smart molecular helical springs as tunable receptors. J. Am. Chem. Soc. 122, 9921–9925 (2000).

    Article  CAS  Google Scholar 

  11. Yashima, E., Maeda, K. & Sato, O. Switching of a macromolecular helicity for visual distinction of molecular recognition events. J. Am. Chem. Soc. 123, 8159–8160 (2001).

    Article  CAS  Google Scholar 

  12. Barboiu, M. & Lehn, J.-M. Dynamic chemical devices: Modulation of contraction/extension molecular motion by coupled-ion binding/ph change-induced structural switching. Proc. Natl Acad. Sci. USA 99, 5201–5206 (2002).

    Article  CAS  Google Scholar 

  13. Pengo, P. et al. Quantitative correlation of solvent polarity with the alpha -/310-helix equilibrium: A heptapeptide behaves as a solvent-driven molecular spring. Angew. Chem. Int. Ed. 42, 3388–3392 (2003).

    Article  CAS  Google Scholar 

  14. Berni, E. et al. Assessing the mechanical properties of a molecular spring. Chem. Eur. J. 13, 8463–8469 (2007).

    Article  CAS  Google Scholar 

  15. Kim, H.-J., Lee, E., Park, H.-S. & Lee, M. Dynamic extension-contraction motion in supramolecular springs. J. Am. Chem. Soc. 129, 10994–10995 (2007).

    Article  CAS  Google Scholar 

  16. Percec, V., Rudick, J. G., Peterca, M. & Heiney, P. A. Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes. J. Am. Chem. Soc. 130, 7503–7508 (2008).

    Article  CAS  Google Scholar 

  17. Chalmers, R., Guhathakurta, A., Benjamin, H. & Kleckner, N. Ihf modulation of tn10 transposition: Sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93, 897–908 (1998).

    Article  CAS  Google Scholar 

  18. Schoenauer, R. et al. Myomesin is a molecular spring with adaptable elasticity. J. Mol. Biol. 349, 367–379 (2005).

    Article  CAS  Google Scholar 

  19. Nishinaka, T., Doi, Y., Hara, R. & Yashima, E. Elastic behavior of reca-DNA helical filaments. J. Mol. Biol. 370, 837–845 (2007).

    Article  CAS  Google Scholar 

  20. Eelkema, R. et al. Molecular machines: Nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  CAS  Google Scholar 

  21. Goto, H., Furusho, Y. & Yashima, E. Supramolecular control of unwinding and rewinding of a double helix of oligo-resorcinol using cyclodextrin/adamantane system. J. Am. Chem. Soc. 129, 109–112 (2007).

    Article  CAS  Google Scholar 

  22. Goto, H., Furusho, Y. & Yashima, E. Double helical oligo-resorcinols specifically recognize oligosaccharides via heteroduplex formation through noncovalent interactions in water. J. Am. Chem. Soc. 129, 9168–9174 (2007).

    Article  CAS  Google Scholar 

  23. Goto, H., Katagiri, H., Furusho, Y. & Yashima, E. Oligoresorcinols fold into double helices in water. J. Am. Chem. Soc. 128, 7176–7178 (2006).

    Article  CAS  Google Scholar 

  24. Katagiri, H., Miyagawa, T., Furusho, Y. & Yashima, E. Synthesis and optical resolution of a double helicate consisting of ortho-linked hexaphenol strands bridged by spiroborates. Angew. Chem. Int. Ed. 45, 1741–1744 (2006).

    Article  CAS  Google Scholar 

  25. Koumura, N., Zijistra, R. W. J., Van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecule rotor. Nature 401, 152–155 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant-in-Aids for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and for Scientific Research on Innovative Areas, “Emergence in Chemistry” (21111508) from the MEXT. We acknowledge Y. Kondo and K. Nagamori of JASCO for their help in the measurements of the stopped-flow CD spectra.

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and E.Y. designed and directed the project and K.M. performed the experiments. K.M., Y.F. and E.Y. analysed and discussed the results and co-wrote the manuscript.

Corresponding authors

Correspondence to Yoshio Furusho or Eiji Yashima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4287 kb)

Supplementary information

Crystallographic information for the double helicate DH2BB2−. (CIF 67 kb)

Supplementary information

Crystallographic information for the Na-containing double helicate DH2BNaB−. (CIF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miwa, K., Furusho, Y. & Yashima, E. Ion-triggered spring-like motion of a double helicate accompanied by anisotropic twisting. Nature Chem 2, 444–449 (2010). https://doi.org/10.1038/nchem.649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing