Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate

Abstract

Direct functionalization of alkanes by oxidation of C–H bonds to form alcohols under mild conditions is a challenge for synthetic chemistry. Most alkanes contain a large number of C–H bonds that present difficulties for selectivity, and the oxidants employed often result in overoxidation. Here we describe a divanadium-substituted phosphotungstate that catalyses the stereo- and regioselective hydroxylation of alkanes with hydrogen peroxide as the sole oxidant. Both cyclic and acyclic alkanes were oxidized to form alcohols with greater than 96% selectivity. The bulky polyoxometalate framework of the catalyst results in an unusual selectivity that can lead to the oxidation of secondary rather than the weaker tertiary C–H bonds. The catalyst also avoids wasteful decomposition of the stoichiometric oxidant, which can result in the production of hydroxyl radicals and lead to non-selective oxidation and overoxidation of the desired products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and reactivity of a divanadium-substituted phosphotungstate catalyst for the selective oxidation of alkanes.

Similar content being viewed by others

References

  1. Jia, C., Kitamura, T. & Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C–H bond activation. Acc. Chem. Res. 34, 633–639 (2001).

    CAS  PubMed  Google Scholar 

  2. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature 417, 507–514 (2002).

    CAS  PubMed  Google Scholar 

  3. Schröder, D. & Schwarz, H. Gas-phase activation of methane by ligated transition-metal cations. Proc. Natl Acad. Sci. USA 105, 18114–18119 (2008).

    PubMed  Google Scholar 

  4. Punniyamurthy, T., Velusamy, S. & Iqbal, J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem. Rev. 105, 2329–2363 (2005).

    CAS  PubMed  Google Scholar 

  5. Cavani, F. & Teles, J. H. Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2, 508–534 (2009).

    CAS  PubMed  Google Scholar 

  6. Mizuno, N. Modern Heterogeneous Oxidation Catalysis (Wiley, 2009).

  7. Bäckvall, J.-E. Modern Oxidation Methods (Wiley, 2004).

  8. Nam, W., Ryu, J. Y., Kim, I. & Kim, C. Stereoselective alkane hydroxylations by metal salts and m-chloroperbenzoic acid. Tetrahedron Lett. 43, 5487–5490 (2002).

    CAS  Google Scholar 

  9. Foster, T. L. & Caradonna, J. P. Fe2+-catalyzed heterolytic RO–OH bond cleavage and substrate oxidation: a functional synthetic non-heme iron monooxygenase system. J. Am. Chem. Soc. 125, 3678–3679 (2003).

    CAS  PubMed  Google Scholar 

  10. Yiu, S.-M., Wu, Z.-B., Mak, C.-K. & Lau, T.-C. FeCl3-activated oxidation of alkanes by [Os(N)O3]. J. Am. Chem. Soc. 126, 14921–14929 (2004).

    CAS  PubMed  Google Scholar 

  11. Wang, C., Shalyaev, K. V., Bonchio, M., Carofiglio, T. & Groves, J. T. Fast catalytic hydroxylation of hydrocarbons with ruthenium porphyrins. Inorg. Chem. 45, 4769–4782 (2006).

    CAS  PubMed  Google Scholar 

  12. Traylor, T. G., Hill, K. W., Fann, W.-P., Tsuchiya, S. & Dunlap, B. E. Aliphatic hydroxylation catalyzed by iron(iii) porphyrins. J. Am. Chem. Soc. 114, 1308–1312 (1992).

    CAS  Google Scholar 

  13. Litvinas, N. D., Brodsky, B. H. & Du Bois, J. C–H hydroxylation using a heterocyclic catalyst and aqueous H2O2 . Angew. Chem. Int. Ed. 48, 4513–4516 (2009).

    CAS  Google Scholar 

  14. Kim, C., Chen, K., Kim, J. & Que, L. Jr Stereospecific alkane hydroxylation with H2O2 catalyzed by an iron(ii)-tris(2-pyridylmethyl)amine complex. J. Am. Chem. Soc. 119, 5964–5965 (1997).

    CAS  Google Scholar 

  15. Roelfes, G., Lubben, M., Hage, R., Que, L. Jr & Feringa, B. L. Catalytic oxidation with a non-heme iron complex that generates a low-spin FeiiiOOH intermediate. Chem. Eur. J. 6, 2152–2159 (2000).

    CAS  PubMed  Google Scholar 

  16. Chen, M. S. & White, M. C. A predictably selective aliphatic C–H oxidation reaction for complex molecule synthesis. Science 318, 783–787 (2007).

    CAS  PubMed  Google Scholar 

  17. Wang, X., Wang, S., Li, L., Sundberg, E. B. & Gacho, G. P. Synthesis, structure, and catalytic activity of mononuclear iron and (μ-oxo)diiron complexes with the ligand 2,6-bis(N-methylbenzimidazol-2-yl)pyridine. Inorg. Chem. 42, 7799–7808 (2003).

    CAS  PubMed  Google Scholar 

  18. Gómez, L. et al. Stereospecific C–H oxidation with H2O2 catalyzed by a chemically robust site-isolated iron catalyst. Angew. Chem. Int. Ed. 48, 5720–5723 (2009).

    Google Scholar 

  19. Si, T. K., Chowdhury, K., Mukherjee, M., Bera, D. C. & Bhattacharyya, R. Homogeneous selective peroxidic oxidation of hydrocarbons using an oxovanadium based catalyst. J. Mol. Catal. A 219, 241–247 (2004).

    CAS  Google Scholar 

  20. Süss-Fink, G., Cuervo, L. G., Therrien, B., Stoeckli-Evans, H. & Shul'pin, G. B. Mono and oligonuclear vanadium complexes as catalysts for alkane oxidation: synthesis, molecular structure, and catalytic potential. Inorg. Chim. Acta 357, 475–484 (2004).

    Google Scholar 

  21. Kirillova, M. V. et al. Group 5–7 transition metal oxides as efficient catalysts for oxidative functionalization of alkanes under mild conditions. J. Catal. 248, 130–136 (2007).

    CAS  Google Scholar 

  22. Yiu, S.-M., Man, W.-L. & Lau, T.-C. Efficient catalytic oxidation of alkanes by Lewis acid/[Osvi(N)Cl4] using peroxides as terminal oxidants. Evidence for a metal-based active intermediate. J. Am. Chem. Soc. 130, 10821–10827 (2008).

    CAS  PubMed  Google Scholar 

  23. Shul'pin, G. B. et al. Oxidations by the system ‘hydrogen peroxide–[Mn2L2O3][PF6]2 (L=1,4,7-trimethyl-1,4,7-triazacyclononane)–carboxylic acid’. Part 10: Co-catalytic effect of different carboxylic acids in the oxidation of cyclohexane, cyclohexanol, and acetone. Tetrahedron 64, 2143–2152 (2008).

    CAS  Google Scholar 

  24. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006).

    CAS  PubMed  Google Scholar 

  25. Mas-Ballesté, R. & Que, L. Jr Targeting specific C–H bonds for oxidation. Science 312, 1885–1886 (2006).

    PubMed  Google Scholar 

  26. Bhyrappa, P., Young, J. K., Moore, J. S. & Suslick, K. S. Dendrimer-metalloporphyrins: synthesis and catalysis. J. Am. Chem. Soc. 118, 5708–5711 (1996).

    CAS  Google Scholar 

  27. Pope, M. T. Heteropoly and Isopoly Oxometalates (Springer, 1983).

  28. Okuhara, T., Mizuno, N. & Misono, M. Catalytic chemistry of heteropoly compounds. Adv. Catal. 41, 113–252 (1996).

    CAS  Google Scholar 

  29. Hill, C. L. Special thematic issue on polyoxometalates. Chem. Rev. 98, 1–390 (1998).

    CAS  PubMed  Google Scholar 

  30. Neumann, R. Polyoxometalate complexes in organic oxidation chemistry. Prog. Inorg. Chem. 47, 317–370 (1998).

    CAS  Google Scholar 

  31. Kozhevnikov, I. V. Catalysts for Fine Chemical Synthesis, Volume 2, Catalysis by Polyoxometalates (Wiley, 2002).

  32. Kamata, K. et al. Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide. Science, 300, 964–966 (2003).

    CAS  PubMed  Google Scholar 

  33. Nakagawa, Y., Kamata, K., Kotani, M., Yamaguchi, K. & Mizuno, N. Polyoxovanadometalate-catalyzed selective epoxidation of alkenes with hydrogen peroxide. Angew. Chem. Int. Ed. 44, 5136–5140 (2005).

    CAS  Google Scholar 

  34. Nakagawa, Y. & Mizuno, N. Mechanism of [γ-H2SiV2W10O40]4−-catalyzed epoxidation of alkenes with hydrogen peroxide. Inorg. Chem. 46, 1727–1736 (2007).

    CAS  PubMed  Google Scholar 

  35. Kamata, K., Hirano, T., Kuzuya, S. & Mizuno, N. Hydrogen-bond-assisted epoxidation of homoallylic and allylic alcohols with hydrogen peroxide catalyzed by selenium-containing dinuclear peroxotungstate. J. Am. Chem. Soc. 131, 6997–7004 (2009).

    CAS  PubMed  Google Scholar 

  36. Costas, M., Chen, K. & Que, L. Jr Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord. Chem. Rev. 200–202, 517–544 (2000).

    Google Scholar 

  37. Schneider, H.-J. & Müller, W. Mechanistic and preparative studies on the regio- and stereoselective paraffin hydroxylation with peracids. J. Org. Chem. 50, 4609–4615 (1985).

    CAS  Google Scholar 

  38. Mello, R., Fiorentino, M., Fusco, C. & Curci, R. Oxidations by methyl(trifluoromethyl)dioxirane. 2. Oxyfunctionalization of saturated hydrocarbons. J. Am. Chem. Soc. 111, 6749–6757 (1989).

    CAS  Google Scholar 

  39. DesMarteau, D. D., Donadelli, A., Montanari, V., Petrov, V. A. & Resnati, G. Mild and selective oxyfunctionalization of hydrocarbons by perfluorodialkyloxaziridines. J. Am. Chem. Soc. 115, 4897–4898 (1993).

    CAS  Google Scholar 

  40. Bianchini, G. et al. Efficient and selective oxidation of methyl substituted cycloalkanes by heterogeneous methyltrioxorhenium–hydrogen peroxide systems. Tetarahedron 62, 12326–12333 (2006).

    CAS  Google Scholar 

  41. Smith, J. R. L. & Shul'pin, G. B. Efficient stereoselective oxygenation of alkanes by peroxyacetic acid or hydrogen peroxide and acetic acid catalysed by a manganese(iv) 1,4,7-trimethyl-1,4,7-triazacyclononane complex. Tetrahedron Lett. 39, 4909–4912 (1998).

    Google Scholar 

  42. Nehru, K. et al. A highly efficient non-heme manganese complex in oxygenation reactions. Chem. Commun. 4623–4625 (2007).

  43. Nam, W., Kim, I., Kim, Y. & Kim, C. Biomimetic alkane hydroxylation by cobalt(iii) porphyrin complex and m-chloroperbenzoic acid. Chem. Commun. 1262–1263 (2001).

  44. Costas, M. & Que, L. Jr Ligand topology tuning of iron-catalyzed hydrocarbon oxidations. Angew. Chem. Int. Ed. 41, 2179–2181 (2002).

    CAS  Google Scholar 

  45. In, J.-H., Park, S.-E., Song, R. & Nam, W. Iodobenzene diacetate as an efficient terminal oxidant in iron(iii) porphyrin complex-catalyzed oxygenation reactions. Inorg. Chim. Acta 343, 373–376 (2003).

    CAS  Google Scholar 

  46. Lee, S. & Fuchs, P. L. Chemospecific chromium[vi] catalyzed oxidation of C–H bonds at –40 °C. J. Am. Chem. Soc. 124, 13978–13979 (2002).

    CAS  PubMed  Google Scholar 

  47. Murray, R. W., Jeyaraman, R. & Mohan, L. Chemistry of dioxiranes. 4. Oxygen atom insertion into carbon–hydrogen bonds by dimethyldioxirane. J. Am. Chem. Soc. 108, 2470–2472 (1986).

    CAS  PubMed  Google Scholar 

  48. Shilov, A. E., & Shul'pin, G. B. Activation of C–H bonds by metal complexes. Chem. Rev. 97, 2879–2932 (1997).

    CAS  PubMed  Google Scholar 

  49. Nardello, V., Marko, J., Vermeersch, G. & Aubry, J. M. 90Mo NMR and kinetic studies of peroxomolybdic intermediates involved in the catalytic disproportionation of hydrogen peroxide by molybdate ions. Inorg. Chem. 34, 4950–4957 (1995).

    CAS  Google Scholar 

  50. Domaille, P. J. & Harlow, R. L. Synthesis and structural characterization of the first phosphorus-centered Baker–Figgis γ-dodecametalate: γ-Cs5[PV2W10O40]·xH2O. J. Am. Chem. Soc. 108, 2108–2109 (1986).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Yamaguchi and K. Yonehara for discussions. This work was supported by the Core Research for Revolutional Science and Technology program of the Japan Science and Technology Agency, the Global COE Program Chemistry Innovation through Cooperation of Science and Engineering, the Development in a New Interdisciplinary Field Based on Nanotechnology and Materials Science Programs and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Science, Sports and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

K.K. and N.M. conceived and designed the experiments. K.K., K.Y. and Y.N. carried out the experiments. K.U. analysed the crystallographic data. K.K. and N.M. co-wrote the paper.

Corresponding author

Correspondence to Noritaka Mizuno.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 853 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamata, K., Yonehara, K., Nakagawa, Y. et al. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nature Chem 2, 478–483 (2010). https://doi.org/10.1038/nchem.648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.648

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing